

www.mellanox.com

Mellanox Technologies Confidential

Public Key Accelerator: Driver
Design and Implementation

Architecture Document

Rev 2.3

Document Number: MLNX-15-XXXX

Check into portalx to obtain the doc number!!!!!

 Contents

2

Mellanox Technologies Confidential

Contents

Revision .. 5

Purpose .. 5

1 Design Rationale ... 7

1.1 Requirements and assumptions ... 7

1.1.1 OpenSSL .. 7

1.1.2 IPsec ... 8

1.1.3 Hardware resources ... 8

1.2 Use cases ... 10

1.2.1 ARM-based applications ... 11

1.2.2 Virtualization ... 11

2 Design Decisions .. 12

2.1 PKA model .. 12

2.1.1 Device Initialization ... 12

2.1.2 Device Assignment ... 13

2.1.3 Command Processing .. 13

2.2 PKA Implementation ... 15

2.2.1 Kernel component ... 16

2.2.2 User Library .. 17

Evaluation Model ... 26

2.3 Benchmark .. 26

2.4 Results .. 26

3 References ... 27

Contents

 3

Mellanox Technologies Confidential

List of Figures

Figure 1 Window RAM ... 9

Figure 2 Count Registers ... 10

Figure 3 PKA APIs overview ... 14

Figure 4 PKA Driver Architecture .. 15

Figure 5 PKA user library calls .. 16

 Contents

4

Mellanox Technologies Confidential

List of Tables

Table 1: Revision ... 5

Table 2: Abbreviation ... 5

Table 3: Related Documentation ... 5

 Public Key Accelerator: Driver Design and Implementation Architecture Document

 5

Mellanox Technologies Confidential

Revision

Table 1: Revision

Rev Date Author Change Description

Purpose

This document provides a description of the design and implementation of the Public Key

hardware accelerator software, also referred to as PKA stack. The software manages and

controls the EIP-154 Public Key Infrastructure Engine, a FIPS 140-31 compliant Public Key

Accelerator (PKA) and operating as a co-processor to offload the Host processor.

Scope

This document presents the rationale behind the design of PKA software, and specifies the

design decisions that guide the implementation of the user API, the PK library and the Linux

device driver.

Definitions/Abbreviation

Table 2: Abbreviation

Definitions/Abbreviation Description

IPsec Internet Protocol Security

SSL Secure Sockets Layer

TLS Transport Layer Security

Related Documentation

This section lists the Related Documentation.

Table 3: Related Documentation

Document Title Description

1 http://csrc.nist.gov/groups/ST/FIPS140_3/documents/FIPS_140-3%20Final_Draft_2007.pdf

 Design Rationale

6

Mellanox Technologies Confidential

Document Title Description

 Public Key Accelerator: Driver Design and Implementation Architecture Document

 7

Mellanox Technologies Confidential

1 Design Rationale

The Public Key Accelerator (PKA) offloads the Host processor, it provides high performance

computation of several complex arithmetic operations, e.g., modular inversion, modular

exponentiation, and high-level operations such as DSA/ECDSA generation and verification.

The EIP-154 Public Key Infrastructure Engine includes a sub-module for True Random

Number generation, as well. These operations are useful for a wide range of security

applications. The EIP-154 can assist with SSL acceleration (Public Key operations) or a secure

high-performance Public Key signature generator/checker.

1.1 Requirements and assumptions

The PKA software stack should be designed as a complete framework for hardware

acceleration; in other words, it should implement an API for standard support such as kernel

crypto API and OpenSSL. On the other hand, the API might be used to implement user

applications requiring Public Key acceleration.

The PKA software stack is expected to run on the BlueField (BF) controller. The controller

consists of an ARM cortex-A72 (AArch64) and executes a Linux distribution. Thus, the PKA

software will be used to interface to the Public Key Infrastructure (PKI).

It is intended to allow multiple instances to control and share PKI resources; the framework

should implement mechanisms to isolate dedicated resources and synchronize accesses to the

shared resources.

1.1.1 OpenSSL

The OpenSSL2 library provides an open source implementation of the SSL/TLS protocols.

From the point of view of cryptographic operations, OpenSSL is based on a synchronous

blocking programming model.

The PKA API design aims to provide an interface to accelerate applications based on OpenSSL

library. Applications should be able to process asynchronous OpenSSL cryptographic

operations on dedicated hardware. Current release defines ENGINE cryptographic module

support to enable asynchronous OpenSSL operations, i.e., non-blocking approach that

supports a parallel-processing model (OpenSSL ENGINE, 2016).

ENGINE objects are typically used to support specialized hardware. These objects act as

containers for implementations of cryptographic algorithms, and support a reference-counted

mechanism to allow them to be dynamically loaded in and out of the running application.

ENGINE objects have two levels of reference-counting to match the way in which the objects

are used: structural reference and functional reference. Structural reference allows the

2 http://www.openssl.org/

 Design Rationale

8

Mellanox Technologies Confidential

ENGINE to be initialized elsewhere than typical environments. A functional reference allows

usage of ENGINE’s functionality. Functional reference can be obtained from an existing

structural reference to the required ENGINE. PKA API implementation should implement

plugins to use a reference to ENGINE in order to provide crypto acceleration.

1.1.2 IPsec

In this document, we will focus on IPsec and its implementation within the native Linux

cryptographic API, also known as the scatterlist crypto API. There are actually two APIs

provided: one for user transforms, transform API, and one for registering algorithms,

algorithm API. Note that transform API is general purpose; not only used by IPsec but it also

provides transform services for other subsystems, such as encrypted filesystems, strong

filesystem integrity, the random character device (/dev/random), network filesystem security

(e.g., CIFS) and other kernel networking services requiring cryptography (Lumpkin &

Phillips, 2006)

CAUTION:

OpenBSD Cryptographic Framework (OCF) and Asynchronous Crypto Layer

(Acrypto) non-native APIs are not within the scope of this document (upstream

issues). Note that OCF and Acrypto are designed specifically to accommodate

asynchronous cryptographic hardware, attaching hardware is a matter of following

the documentation and examples for hardware support that is already included.

The PK API tends to support asynchronous PK operations enabled by native Linux

cryptographic API. In order to access the hardware, a Linux device driver should be

implemented. The driver will then ensure the offload of crypto operations issued by Linux

kernel services.

NOTE:

There are existing APIs to add asynchronous device support to the native API;

These project, tools and APIs are currently under investigation;

Cryptodev-linux project: http://cryptodev-linux.org/

Crypto Engine Framework: http://www.linaro.org/blog/core-dump/crypto-engine-

framework/

kernel Crypto API architecture: http://www.chronox.de/crypto-API/

1.1.3 Hardware resources

From the point of view of the controller, the PKI consists of a set of control status registers

and memory pools:

http://cryptodev-linux.org/
http://www.linaro.org/blog/core-dump/crypto-engine-framework/
http://www.linaro.org/blog/core-dump/crypto-engine-framework/
http://www.chronox.de/crypto-API/

 Public Key Accelerator: Driver Design and Implementation Architecture Document

 9

Mellanox Technologies Confidential

1.1.3.1 Window RAM

A contiguous 64KB memory block partitioned into 4 regions each with a command descriptor

ring and a result descriptor ring, and data vectors. Command descriptor ring and result

descriptor ring can be used either as one ‘overlapping’ ring or as two separate ‘non-

overlapping’ rings. In the following, the ring pair and its related data memory pool are referred

to as a Ring. The current hardware defines 4 regions of 16KB each, which may be co-located

or placed at different locations in window RAM. Each region contains a command descriptor

ring, a result descriptor ring and data vectors memory pool. Descriptors contain pointers to the

vector data within the 16KB region.

The PKA driver is responsible for partitioning the window RAM. It has to allocate memory

for command/result descriptor rings and data vectors. Generally, data memory is larger than

descriptor rings memory.

Figure 1 Window RAM

1.1.3.2 Ring Counters

There are two hardware counters per Ring, the command count register and the result count

register. These counters have side-effects and trigger the command processing, i.e., enables

the EIP-154 master firmware, when commands have been written to a given command

descriptor ring or results have been read from the related result descriptor ring.

 Design Rationale

10

Mellanox Technologies Confidential

Figure 2 Count Registers

1.1.3.3 Ring information control/status words

The EIP-154 master controller use some words of buffer RAM to store read/write pointers and

statistics for the rings, providing progress indication and a re-sync capability. These words are

kept locally by the driver.

The PKA driver writes the ring base addresses, ring size and type, and initialize (clear) the

read and write pointers and statistics. Upon a PKA command, the master firmware will read

and partially update the information words.

1.2 Use cases

NOTE:

Use cases presented below give an overview of the expected work as well as long term

vision to extend this work. One of the main purpose of this work is to attempt to

provide a complete implementation to cover the following use cases (short and long

term objective).

Also note that currently the document presents PKA driver implementation for

ARM-based applications and support some features to enable virtualization.

 Public Key Accelerator: Driver Design and Implementation Architecture Document

 11

Mellanox Technologies Confidential

1.2.1 ARM-based applications

1.2.2 Virtualization

 Design Decisions

12

Mellanox Technologies Confidential

NOTE:

Bare-metal hypervisors are not within the scope of the document. Software tools

provided by Mellanox Software team include an edited Linux distribution (created

with Yocto) and KVM/QEMU hypervisor layer.

2 Design Decisions

The PKA framework consists of separate but related component parts; an API, a library and a

device driver. The driver provides kernel support and manages hardware resources, the library

offers direct access to the PKI and handles PK commands, and the API specifies interfaces

that are used by third-party modules and makes available a bunch of public key operations.

From software perspective, PKI resources are viewed as a set of devices which are isolatable

from all other devices in the system. Since Rings are used to interface to the EIP-154 master

firmware controller, those might be allocated to different instances.

NOTE:

We define an instance as crypto context that is using a set of PKI resources and that

actively issues PK comands. In the following, we use ‘instance’ or ‘crypto instance’

to refer to a third-party code that uses the API or the library services.

2.1 PKA model

At startup, the PKA device driver initializes the hardware by booting-up the EIP-154 (i.e.,

loading the firmware and setting interrupts), partitioning the window RAM and writing the

applicable ring information at start of the buffer RAM. After that, the EIP-154 master firmware

is operational and it will be able to process PK commands. When an instance requests PKI

resources, the library verifies whether Rings are available then assign Rings as needed. It

performs a memory mapping of the corresponding Rings, configures the command descriptor

ring according to Ring information control/status words, and writes the input data vector. Once

a result is ready, it reads the result descriptor ring and copies the output data vector (if

applicable). Result status may be reported to clients using polling mode.

From this illustrative model, we can see that PKA library controls Ring allocation. Once a

given instance owns a Ring, it won’t be interfered with by another instance, i.e., allocated

Rings cannot be used by another instance.

2.1.1 Device Initialization

During the initialization phase, the driver configures the AIC (Advanced Interrupt Controller)

so that all interrupts are properly recognized. It must set the signal polarity (High Level/Rising

edge) for each individual interrupts using AIC Polarity Control Register (AIC_POL_CTRL),

and must set the signal type for each individual interrupt using AIC Type Control Register

(AIC_TYPE_CTRL).

 Public Key Accelerator: Driver Design and Implementation Architecture Document

 13

Mellanox Technologies Confidential

The boot-up sequence of the EIP-154 requires three firmware images: Boot image loaded into

PKA_MASTER_PROG_RAM, Farm image loaded into PKA_BUFFER_RAM or into

PKA_SECURE_RAM whether High Assurance mode or non-High Assurance mode is

needed, and Master image loaded into PKA_MASTER_PROG_RAM.

Finally, the driver partition the window RAM with different regions and writes the applicable

ring information at start of the PKA_BUFFER_RAM. A complete and detailed boot-up

sequence is described in the INSIDE Secure’s document (Firmware Reference Manual, 2013).

This phase requires specific knowledge of firmware location, direct access to PKA RAMs and

should be executed a single time during system startup. Thus, these operations are executed

purely by the device driver within controller operating system, at module initialization. We

assume that kernel module for device driver is a loadable module, thus customers may not

need PK I/O block.

2.1.2 Device Assignment

As noted in the previous sections, ring information control/status words, ring counters and

window RAM are referred by Ring. The library code is responsible for allocating dedicated

Rings to crypto instances.

The device driver controls and manages at most 4 PKA I/O blocks. Each device has 4 Rings,

i.e., a pair of command/result descriptor rings within 16KB window RAM and 2 count

registers. The driver organizes the PK resources, first by shared resources which refer to an

I/O block, then by dedicated resources which refer to Rings. The total of dedicated resources

is as the number of Rings by mean 16. Each Ring is accessed through its file descriptor.

The device driver creates device files for each Ring. The library call can request a Ring by

simply opening its corresponding file. When a given instance requests resources, the driver

finds free Rings, marks it as unavailable, and returns it. It looks trivial but PKA library may

do one or multiple open() calls to find free Rings which can be used by the client, and return

its related data. Conventional RR algorithm (modulus-based algorithm) is used to load balance

among PKA I/O blocks then among its set of Rings. Once a Ring is no more used by a given

instance, it must be released so it is marked again as available.

In order to support direct access to allocated resources, the library code calls mmap() on the

Rings file descriptor returned by open() call, to map directly-accessible hardware words and

registers. The driver performs a translation of virtual address space to physical address space,

then returns a page for the requested resources. Note that one or more pages are needed to

allow an instance accessing Rings, i.e., mmap() is called to map ring counters and related

window RAM region.

2.1.3 Command Processing

After the device initialization and device assignment phases, the PKA is ready to receive

commands. The library implements function to configure command descriptor rings by setting

command type, operand offset and operand size. Upon the command count register is

incremented, the command processing starts and the result count register is decremented. The

 Design Decisions

14

Mellanox Technologies Confidential

crypto instance can retrieve the result descriptor within the result ring and copy the associated

output vector(s).

Interfaces are provided to submit PK operations at user space level and kernel level. The APIs

wrap up client requests and offer direct access to resources from user process to enable high

performance hardware acceleration. The PKA library is responsible for writing and reading

command result descriptors, and for appending descriptors to command/result descriptor rings.

Moreover, an instance can run over one or more threads. The APIs support one queue per

thread, each queue is attached to one or multiple rings. At this level, there is no need to define

priorities per thread nor per operation.

Polling mode is used to report result status to the associated instance. Indeed it allows the

process to execute alternative tasks and avoids blocking loops. On the other hand, interrupts

are enabled to inform kernel services which offloads PK operations to the EIP-154 that a given

result is ready.

From this description, different APIs might be defined:

 User API, to wrap up client requests and submit PK commands (asynchronous call); It

allows to process client requests, configure command descriptors, and retrieve results;

 Queue Management API, to deal with client requests within multithreading

environment and leverage hardware limitations;

 Ring Management API, to manage command/result descriptors within hardware

descriptor ring and to communicate with the hardware controlled by the EIP-154 master

firmware;

 Memory Management API, to allocate/free memory for input/output data vectors;

 Device Management API: to abstract and manage PK hardware resources.

Figure 3 PKA APIs overview

CAUTION:

Provide support for True Random Number Generation (TRNG) operations.

 Public Key Accelerator: Driver Design and Implementation Architecture Document

 15

Mellanox Technologies Confidential

2.2 PKA Implementation

NOTE:

The current PKA implementation does not yet provide complete support for either

OpenSSL or kernel Crypto API. It defines user interfaces only that would be used

over user space application requiring PK acceleration.

The PKA framework might be considered as a modular architecture among both kernel and user

spaces. Kernel component and APIs are implemented multiple features that enable PK hardware

acceleration. This is realized through internal components, i.e., a set of libraries that provide all

the elements needed for handling PK commands, dealing with multithreading, and managing

hardware resources. It also includes a VFIO-based device driver to ensure the development of

safe, high performance user-space drivers. The driver implements an interface that might be

supported by virtualization tools and some generic driver infrastructure. It breaks the hardware

resources into a set of devices which are isolatable from all other devices in the system, and that

might be allocated to different applications.

Figure 4 PKA Driver Architecture

The PKA user library provides interfaces that allow applications to initialize an execution

context with a single or multiple Rings, where Rings might belong to different I/O blocks. The

library allocates then Ring resources to the given application and processes different PK

operations. To illustrate that, we present different PKA calls through the proposed interfaces.

 Design Decisions

16

Mellanox Technologies Confidential

Figure 5 PKA user library calls

2.2.1 Kernel component

BlueField has two crypto blocks, each consists of two PKA blocks based on EIP-154. The

EIP-154 uses four rings as a communication mechanism between its farm engines controlled

by the master firmware and the ARM cores.

PKA devices are managed by the ‘pka-mlxbf’ Linux driver. The driver is designed to handle

code for different type of devices; The PKA block is considered as the main device that might

be shared among several PK user instances. In order to realize this vision, a character device

file is created for each ring within a PKA block. That ends up with 16 devices that might be

assigned separately regardless the user instance requesting them. However, the main device

must be initialized before running any instance or using any ring. Thus, the driver deals with

those two kind of devices, the main PKA block referred to as shim and the ring devices. Note

that the ring is also referred to as VFIO device.

2.2.1.1 Device probe

The Linux device driver provides two probe routines: pka_drv_probe_device() and

pka_drv_probe_vfio_device(). The first routine probes and registers the given shim, and the

second routine initializes and registers the given ring. During shim registration, the boot-up

sequence is executed, i.e., loading firmware images into internal rams, configuration of shim's

parameters and mapping of memory regions and control/status registers. The shim is registered

through the pka_dev_register_shim() call. On the other hand, ring devices are registered as

 Public Key Accelerator: Driver Design and Implementation Architecture Document

 17

Mellanox Technologies Confidential

VFIO devices. Each device belongs to a VFIO group that is the unit for device allocation. Note

that it is mandatory that device is associated with an IOMMU group before adding it to a VFIO

group. The IOMMU group for a given device is retrieved through vfio_iommu_group_get(),

and then, the device is added to a VFIO group through vfio_add_group_dev(). The ring

registration is done by calling pka_dev_register_ring(); Ring counters are reset, the buffer

memory words are configured with regards to the defined configuration. You can check the

configuration file for further details about the shim and ring configuration; the file is located

in src/include/pka_config.h.

2.2.1.2 Driver commands

Moreover, the driver implements the VFIO device operations including open(), release(),

mmap() and ioctl(). Among others, the ioctl() call supports PK driver specific commands other

than the commands defined for VFIO groups and devices. Those commands are

PKA_VFIO_GET_REGION_INFO, to allow user space to get information about device

memory, in particular the ring counters region and the window RAM region, and

PKA_VFIO_GET_RING_INFO, to allow user space to get ring configuration from the EIP-

154 Buffer RAM.

2.2.1.3 Interrupt handling

All ring devices are accessed by polling. However, the driver registers an IRQ handler for shim

devices. Those interrupts are not really relevant to the library or the user application, so the

handler will simply disable the source of interrupt and will quickly return.

2.2.1.4 ACPI support

The driver also implements a DT-based probe routine and an ACPI-based probe routine. Since

there can be two kernel build combinations, it is possible to probe devices in both cases.

NOTE:

Currently, the DT type routine is not implemented yet, due to a couple of issues

related to the SMMU configuration and the kernel source version.

2.2.2 User Library

The API enables PK hardware acceleration through internal components, i.e., a set of libraries

that provide all the elements needed for handling PK commands, dealing with multithreading,

and managing hardware resources.

2.2.2.1 User API

It presents mainly an interface to receive PK requests, and to format these requests according

to command descriptors. A generic layout of a PKI command descriptor can be found in

(Firmware Reference Manual, 2013).

 Design Decisions

18

Mellanox Technologies Confidential

This API makes available a number of arithmetic (both basic operations (e.g., add and multipy)

as well as complex operations (e.g., modular exponentiation and modular inversion). It is used

for high-level operations such as RSA, Diffie-Hallman, Elliptic Curve Cryptolography, and

the Federal Digital Signature Algorithm (DSA as documented in FIPS 186) public-private key

systems.

It consists of a northbound interface which allows user application to submit PK operations.

Note that almost all functions are asynchronous and require a 'handle' argument to be passed

to them. Typically, a 'handle' structure encapsulates all the parameters, status of a PK instance

owned by a given user application. Note that application running multiple threads has many

handles as threads.

First of all, pka_init_global() gets called to initialize the crypto instance. User application uses

a PKA instance to request PK operations. An instance refer to a global execution context

including a set of hardware rings and data structures specific to the application. The

pka_init_global() call then creates a shared memory object which might be accessed by both

processes and threads associated with the same PK instance. The library determines the size

of shared memory needed by the instance according to the size and the number of SW queues.

Indeed, user application must specify SW queues parameters that are assigned to its worker

threads. Each worker thread is characterized by its command queue and result queue.

pka_init_global() also lookups for available HW Rings, creates a set of SW queues and returns

a pointer to the shared memory referred by pka_global_info_t.

Below the definition of the PK global information structure encapsulated by the

pka_instance_t:

 Public Key Accelerator: Driver Design and Implementation Architecture Document

 19

Mellanox Technologies Confidential

After calling pka_init_global(), a client can access Ring resources through a ‘handle’. To obtain

this handle, one might call pka_init_local() which requires a valid PK instance. The handle

encapsulates local execution context information, provide a reference to PK global information,

and allows to process PK operation. From user point of view, PK operation consists on filling

command descriptor(s) according to the given PK command and retrieving the associated

results. Descriptors contains only pointers to vector data in window RAM. When a result is

ready, the API allows client to read result descriptor and vectors data.

Below the definition of the PK local information structure encapsulated by the handle

pka_handle_t :

All functions used to perform PK commands are asynchronous and require a 'handle' argument

to be passed to them. In addition to the ‘handle’, the function takes a pointer to user application

data that might be associated with the PK operation, e.g., crypto session information.

Upon a PK command issued, The API processes the operands byte order, if needed. It also,

apply few operand checks in order to prevent errors in hardware. Note that all of the operands

passed via the PKA API calls are copied from the user context to the PKA instance context.

After that, the command is submitted via pka_submit_cmd() call. This function retrieves both

of the local and global information related to the handle and instance, respectively. It presents

the main function for PK command processing.

First, the function prepares the command descriptor to enqueue via

pka_queue_set_cmd_desc(). This descriptor encapsulates all of the operands and meta-data

needed for command processing. When the synchronization mode is disabled then simply add

the command descriptor to the ring, if there are available descriptors. Otherwise, add it to the

worker queue. After that, the current worker is responsible of retrieving results from the result

rings and appending them to their associated workers’ reply queue. This is done by the function

pka_rslt_dequeue(). After that, the current worker processes all of the command queues that

belong to its instance using pka_process_queues_nosync().

Note that the queue descriptors and the ring descriptors have different format. Unlike the ring

descriptors which are hardware specific, queue descriptors holds user-related data and are

designed to minimize the overhead introduced by enqueuing/dequeuing objects. Ring

descriptor defines a 64-bit field referred to as tag, which might be used by user applications.

Therefore, the PKA library use that field to store a pointer to data related to the worker and

few command statistics. When dequeuing objects from the ring, the worker result queue can

be easily retrieved via that data pointer. A generic layout of a ring descriptors can be found in

(Firmware Reference Manual, 2013). Once all of the result rings processed, the worker is then

free and can perform either other non-PKA related tasks or additional PKA related tasks.

 Design Decisions

20

Mellanox Technologies Confidential

On the other hand, when the synchronization mode is enabled, the current worker tries to acquire

a lock via pka_try_acquire_lock(). This lock is provided by the instance to protect accesses to

shared rings. Technically, it holds information about the worker requesting the lock and the lock

status, whether acquired or not. When a given worker tries to acquire the lock it atomically sets

the bottom byte to its number (identifier + 1, to allow the possibility that worker’s number starts

at 0). But this will only succeed if this bottom byte is zero. If the lock is already held by another

worker (i.e., bottom byte is non-zero). The remaining lock bit field are set with the dedicated

thread request bit. Those bits are set so that the current lock owner will know about other

requests, in other words, the lock owner will not be able to release this lock while any of these

request bits are set. Releasing the lock is done by calling pka_try_release_lock(). Acquiring

and/or releasing the lock is based on an Exclusive Load/Store instructions. Such locking

mechanism leverages the cases where there may still have work to do, before releasing the lock.

For instance, when the worker ‘x’ owns the lock, this latter is responsible of

enqueuing/dequeuing objects to/from rings. If another worker ‘y’ tries to acquire a lock but fails

to do that, it will append its request to the command queue, and if this was done few cycles

before the worker ‘x’ tries to release the lock, then, the request will wait longer until another

worker ‘z’ acquires the lock and process the command queues. Thanks to the request bit field

within the lock, that scenario is avoided and all of the requests are processed by the lock owner

before exiting.

Note that those who failed on their first attempt to acquire the lock, will make a second attempt,

to register their request, in case they fail a second time. This second call waits, if necessary, for

any previous request bit to be cleared. Each bit setting corresponds to exactly one PK request.

It is somewhat rare that the second attempt to acquire the lock fails. Indeed, the current lock

owner is guaranteed to see the previously set request bit and act on it before it can release the

lock.

The synchronization mode aims then, to avoid multiple accesses to rings and optimize the queue

and ring processing among workers. If disabled, the application should provide its own

mechanism to prevent two workers of accessing rings at the same time.

Command queue processing is done by calling pka_process_queues_sync(). This function will

make sure that the current lock owner has no pending request before releasing the lock. Note

that the queue processing scheme is practically the same either the synchronization mode is

enabled or not; the ring result queues are processed first in order to get available results, the

results are appended to the reply queue. Then, the command queues are processed while there

 Public Key Accelerator: Driver Design and Implementation Architecture Document

 21

Mellanox Technologies Confidential

are available rooms in the command rings. To check the number of outstanding command

requests for a given ‘handle’, one might call pka_request_count().

2.2.2.2 Queue Management API

When client applications run over multiple threads, each thread can use the attached instance to

request PK operations (still applicable when client runs a single thread). Thus, PKA library

assigns queues for threads and provides functions to handle these queues. Each queue is

associated to a single thread and define a maximum number of elements (or threshold). For each

input queue there is an associated output queue. This helps to isolate thread operations but

requires more resources. Note that there is no defined priority per client/thread.

This API consists of an implementation of circular queues on top of command/result descriptor

rings. It allows multiple threads/workers to submit PK commands to the hardware without

causing ring congestion. Software-based queues are assigned to clients which may run over

single or multiple threads, a pair of queue per thread: one queue to append command descriptors

and another one to append result descriptors. Each group of queues is associated to one or a

group of rings depending on client execution context a.k.a PK instance. The implementation of

the software-based queues help to leverage the small size of descriptor rings and avoid

interrupts, so far (processes have to wait until a given ring can accept new descriptors again).

Queues have the following properties :

- FIFO,

- Capacity is fixed,

- Lockless implementation,

However, having many circular queues with significant size costs in terms of memory (more

than linked list queue). An empty queue contains at least N objects.

Also note that the implementation may include a mechanism which exert a back pressure to

inform a given client to pause. It defines a threshold, once an enqueue reaches the high threshold,

the client is notified.

 Design Decisions

22

Mellanox Technologies Confidential

The current implementation supports simple producer and simple consumer. One object can be

enqueued and dequeued at a time.

2.2.2.3 Ring management API

The window RAM supports 4 Rings, it is statically divided into 4 separate (contiguous or non-

contiguous) regions of 16KB. Each region include command/descriptor rings and operands.

Thus, the driver partitions the 16KB memory region with descriptors memory and vector data

memory. Descriptors memory supports the 4 Rings and usually occupies a small region. While

the library is responsible for selecting the location of command/result descriptor rings within

the allocated memory (This is done by writing Buffer RAM words), it is mandatory to specify

if each pair of descriptor rings are co-located or separated. Co-located rings offer a better

memory usage by saving ½ of descriptor memory space. On the other hand, it causes

performance issues where all commands hold by the rings should be processed before copying

result descriptors. Separated descriptor rings provide a fast response, however it increases

memory usage, i.e., descriptor memory requires more space and thus operand memory should

decrease. In addition, the library allocates and frees memory for input/output data vectors which

consist of operands and results.

NOTE:

Co-located or separated descriptor rings should be considered. Currently, no

decision was made regarding this point.

 Public Key Accelerator: Driver Design and Implementation Architecture Document

 23

Mellanox Technologies Confidential

Moreover, a concrete strategy for memory partition should be provided, explained

and justified. We have to determine the maximal size of operands for a each

operation, approximate the number of occurrence of the given operation and

evaluate the number of descriptors/commands which could be processed. The initial

proposition is to partition with 1K-2K for descriptor memory and with the

remaining 15-14K for vector data memory

An efficient memory partition is a trade-off between descriptors a given Ring can hold, and

vectors corresponding to the descriptors a vector data memory can support. Thus, it is possible

to have the rings full while the vector memory can support more data. The opposite can also

happen, but it is not suitable.

We statically divide the 16K memory region into three partitions: First partition is reserved for

command descriptor ring (1K), second partition is reserved for result descriptor ring (1K), and

the remaining 14K are reserved for vector data. Through this memory partition scheme,

command/result descriptor rings hold a total of 1KB/64B = 16 descriptors each. The addresses

for the rings start at offset 0x3800. Also note that it is possible to have rings full while the vector

data can support more data, the opposite can also happen, but it is not suitable. For instance

ECC point multiplication requires 8 input vectors and 2 output vectors, a total of 10 vectors. If

each vector has a length of 24 words (17x4B = 68B), we can process 14KB/680B = 21

operations which is close to 16 the total descriptors supported by rings. On the other hand, using

12K vector data region, allows to process only 18 operations, while rings can hold 32 descriptors

(ring usage is significantly low). For ECDSA verify, we have 12 vectors which require 816B,

with 14KB we can handle 17 operations, against 15 operations with 12KB vector data memory.

We believe that the aforementioned memory partition help us to leverage the trade-off between

supported descriptors and required vectors. Note that these examples gives an approximate

values and does not include buffer word padding across vectors.

To request rings, a user application must call pka_ring_lookup(). This call returns a table of

rings matching the number specified by the initial request or less than that, when the number of

available rings are less than the requested number. Based on the requested number of rings, the

function looks over the rings, issues library calls to the device interface to determine whether a

given ring can be used or not. A call to pka_dev_has_avail_ring() will trigger a modulus-based

algorithm (RR like) to rolls over the PKA crypto blocks, and tries to open one ring at a time. If

it succeeds, then the ring is added to the returned list of rings. Otherwise, the algorithm continues

and check the following ring within the next block. To give an overview about the algorithm,

the current configuration defines N=4 PKA crypto blocks, each block has M=4 rings; if the

application requests X=6 rings, then the algorithm will return the following rings: Rings (N, M)

= {(0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (1, 1)}, in case all of the rings are available.

This API also provides a support for descriptors management within Rings. Upon a descriptor

is ready, it should be written to command descriptor ring. A command descriptor ring holds

several descriptors. This API defines functions to append command descriptors to rings, read

result descriptors and write to/from window RAM.

 Design Decisions

24

Mellanox Technologies Confidential

Note that functions and structures used by this API are already implemented for userland

applications. However, code can be arranged and somehow extended to be called within kernel

module code.

2.2.2.4 Memory management API

The memory management interface is used by rings to allocate free memory needed by PK

commands. PKA memory allocator's job is primarily to manage the data memory - i.e.

efficiently allocate and free memory space to hold the input/output vectors. One could use this

code to do individual allocations and frees for each vector, but instead it is expected that a

single contiguous allocation/free will be done for all the vectors - i.e. operands and results,

belonging to a single command. It is possible to also support a mode of operation, whereby

individual operand allocation can be used when a single command allocation fails for lack of

memory (i.e. this can deal efficiently with the occasional data memory fragmentation where

there is enough contiguous memory pieces to hold the individual operand, but not single piece

large enough to hold all of the operands).

This API assumes that Data Memory is in the bottom 14KB of the "PKA window RAM" and

so the addresses for the rings start at offset 0x3800. Also, note that just because the rings hold

16 descriptors, does not mean that 16 commands can be outstanding - since it is expected that

often the Data Memory will run out before any or all of the rings are full themselves. Of course

the opposite can also happen (though less likely) - that is the rings are full, when the Data

Memory is not!

All allocations handled by the current implementation start at least on 64-byte boundaries and

all allocation have sizes that are a multiple of 64 bytes. The algorithm here always maximally

coalesces contiguous free space. In other words, there is never a case where two free space

descriptors point to adjacent memory. Of course the converse is not true. Used space blocks

can be adjacent to either other used space blocks to free space blocks.

 Public Key Accelerator: Driver Design and Implementation Architecture Document

 25

Mellanox Technologies Confidential

2.2.2.5 Device Management API

The implementation of the device driver is based on the Linux VFIO. It is essentially an

interface that can be implemented by device drivers and that is supported by virtualization

tools and some generic driver infrastructure. VFIO defines a set of devices which are isolatable

from all other devices in the system as a “group”, and a container class to hold one or more

groups. A container is created by simply opening the /dev/vfio/vfio character device. Once a

new group is added to the container and the related device is bound to the VFIO driver, it will

appear as /dev/vfio/group, where group is the IOMMU group number of which the device is a

member. More details can be found in VFIO kernel Documentation3.

To meet the driver model principles, we define a device interface which hold data structure

and functions used by device driver to register/unregister devices. The PKA device interface

consists of a southbound interface of the PK library for requesting and managing hardware

resources. This also define the code to initialize and prepare devices to be used by crypto

instances. After device initialization, Ring resources can be opened and Ring regions can be

mapped into physical address space, so clients can read/write from/into device

registers/memory directly.

It implements pka_dev_open_ring() to open a given ring from the userland. This call makes

several syscalls to open the IOMMU group associated with the ring, test if the group is viable

and available, add the group to the container, set an IOMMU type and returns a corresponding

file descriptor for the device. Before calling pka_dev_open_ring() the PKA library passes an

already opened container. A PK instance opens a single container for its set of ring devices.

Ring regions are mapped via pka_dev_mmap_ring(), this call insure the mapping of

control/status registers region and window RAM region only. User application are not able to

access ring information control/status words located in Buffer RAM.

3 https://www.kernel.org/doc/Documentation/vfio.txt

 Evaluation Model

26

Mellanox Technologies Confidential

Evaluation Model

(Evaluation model --description goes here)

2.3 Benchmark

Public Key operations:

- RSA

- DSA sign/verify,

- ECDSA sign/verify

Performance metric:

- Number of operation per second (straightforward metric)

Controlled parameters:

- key size (exponent) (1024 bit / 2048 bit / 8 bit)

- key size (modulus) (1024 bit keys are common default / 2048 bit)

(typically public key size and private key size are the same in p2p)

Observed parameter:

- CPU overhead : Time to load operands, Time to set descriptors, Waiting time in SW queue

(This parameter should be considered in order to enhance/optimize hardware acceleration)

2.4 Results

Below, we measure the overhead due to the HW offload, running one thread/one Ring in

single process mode, on a 2 GHz Cortex-A72.

Previous implementation:

PK command Size (bits) Sign (cycles) Verify (cycles)

RSA 1024 3120

DSA 1024 1680 3280

2048 2100 2640

3072 2480 3140

ECDSA 256 1860 3460

 Public Key Accelerator: Driver Design and Implementation Architecture Document

 27

Mellanox Technologies Confidential

384 3480 3760

521 2580 2940

Recent implementation:

PK command Size (bits) Sign (cycles) Verify (cycles)

RSA 1024 3700

DSA 1024 1660 3740

2048 3820 4040

3072 2340 2600

ECDSA 256 1600 3780

384 2040 2520

521 2420 3060

3 References

Firmware Reference Manual. (2013, 12 09). Public Key Infrastructure Engine.
INSIDE Secure.

Lumpkin, T., & Phillips, K. (2006). Linux, IPsec, and Crypto Hardware
Acceleration. Citeseer.

OpenSSL ENGINE. (n.d.). Retrieved from

https://www.openssl.org/docs/man1.0.1/crypto/engine.html

