
PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

Apache™ FOP: PDF encryption.

Version 1298724

by J.Pietschmann, Jeremias Märki

Table of contents

1 Overview.. 2

2 Usage (command line)... 2

3 Usage (embedded)..2

4 Environment... 4

5 Installing a crypto provider..4

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache™ FOP: PDF encryption.

Page 2/5PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

1 Overview

Apache™ FOP supports encryption of PDF output, thanks to Patrick C. Lankswert. This feature is
commonly used to prevent unauthorized viewing, printing, editing, copying text from the document and
doing annotations. It is also possible to ask the user for a password in order to view the contents. Note that
there already exist third party applications which can decrypt an encrypted PDF without effort and allow
the aforementioned operations, therefore the degree of protection is limited.

For further information about features and restrictions regarding PDF encryption, look at the
documentation coming with Adobe Acrobat or the technical documentation on the Adobe web site.

2 Usage (command line)

Encryption is enabled by supplying any of the encryption related options.

An owner password is set with the -o option. This password is actually used as encryption key. Many
tools for PDF processing ask for this password to disregard any restriction imposed on the PDF document.

If no owner password has been supplied but FOP was asked to apply some restrictions, a random password
is used. In this case it is obviously impossiible to disregard restrictions in PDF processing tools.

A user password, supplied with the -u option, will cause the PDF display software to ask the reader for
this password in order to view the contents of the document. If no user password was supplied, viewing
the content is not restricted.

Further restrictions can be imposed by using the following command-line options:

Option Description

-noprint disable printing

-nocopy disable copy/paste of content

-noedit disable editing in Adobe Acrobat

-noannotations disable editing of annotations

-nofillinforms disable filling in forms

-noaccesscontent disable text and graphics extraction for accessibility purposes

-noassembledoc disable assembling documents

-noprinthq disable high quality printing

3 Usage (embedded)

When FOP is embedded in another Java application you need to set an options map on the renderer. These
are the supported options:

Option Description Values Default

encryption-length The encryption length in bit Any multiple of 8 between 40
and 128

40

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache™ FOP: PDF encryption.

Page 3/5PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

Option Description Values Default

ownerPassword The owner password String

userPassword The user password String

allowPrint Allows/disallows printing of
the PDF

"TRUE" or "FALSE" "TRUE"

allowCopyContent Allows/disallows copy/paste
of content

"TRUE" or "FALSE" "TRUE"

allowEditContent Allows/disallows editing in
Adobe Acrobat

"TRUE" or "FALSE" "TRUE"

allowEditAnnotations Allows/disallows editing of
annotations

"TRUE" or "FALSE" "TRUE"

allowFillInForms Allows/disallows filling in
forms

"TRUE" or "FALSE" "TRUE"

allowAccessContent Allows/disallows text and
graphics extraction for
accessibility purposes

"TRUE" or "FALSE" "TRUE"

allowAssembleDocument Allows/disallows assembling
document

"TRUE" or "FALSE" "TRUE"

allowPrintHq Allows/disallows high
quality printing

"TRUE" or "FALSE" "TRUE"

Note:

Encryption is enabled as soon as one of these options is set.

An example to enable PDF encryption in Java code:

import org.apache.fop.pdf.PDFEncryptionParams;

[..]

FOUserAgent userAgent = fopFactory.newFOUserAgent();
useragent.getRendererOptions().put("encryption-params", new PDFEncryptionParams(
 null, "password", false, false, true, true));
Fop fop = fopFactory.newFop(MimeConstants.MIME_PDF, userAgent);
[..]

The parameters for the constructor of PDFEncryptionParams are:
1. userPassword: String, may be null
2. ownerPassword: String, may be null
3. allowPrint: true if printing is allowed
4. allowCopyContent: true if copying content is allowed
5. allowEditContent: true if editing content is allowed
6. allowEditAnnotations: true if editing annotations is allowed
7. allowFillInForms: true if filling in forms is allowed.

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache™ FOP: PDF encryption.

Page 4/5PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

8. allowAccessContent: true if extracting text and graphics is allowed
9. allowAssembleDocument: true if assembling document is allowed
10. allowPrintHq: true if printing to high quality is allowed

Alternatively, you can set each value separately in the Map provided by
FOUserAgent.getRendererOptions() by using the following keys:
1. user-password: String
2. owner-password: String
3. noprint: Boolean or "true"/"false"
4. nocopy: Boolean or "true"/"false"
5. noedit: Boolean or "true"/"false"
6. noannotations: Boolean or "true"/"false"
7. nofillinforms: Boolean or "true"/"false"
8. noaccesscontent: Boolean or "true"/"false"
9. noassembledoc: Boolean or "true"/"false"
10. noprinthq: Boolean or "true"/"false"

4 Environment

In order to use PDF encryption, FOP has to be compiled with cryptography support. Currently, only JCE
is supported. JCE is part of JDK 1.4. For earlier JDKs, it can be installed separately. The build process
automatically detects JCE presence and installs PDF encryption support if possible, otherwise a stub is
compiled in.

Cryptography support must also be present at run time. In particular, a provider for the RC4 cipher is
needed. Unfortunately, the sample JCE provider in Sun's JDK 1.4 does not provide RC4. If you get a
message saying

"Cannot find any provider supporting RC4"

then you don't have the needed infrastructure.

There are several commercial and a few Open Source packages which provide RC4. A pure Java
implementation is produced by The Legion of the Bouncy Castle. Mozilla JSS is an interface to a native
implementation.

5 Installing a crypto provider

The pure Java implementation from Bouncy Castle is easy to install.
1. Download the binary distribution for your JDK version.
2. Unpack the distribution. Add the jar file to your classpath. A convenient way to use the jar on Linux

is to simply drop it into the FOP lib directory, it will be automatically picked up by fop.sh.
3. Open the java.security file and add

security.provider.6=org.bouncycastle.jce.provider.BouncyCastleProvider,
preferably at the end of the block defining the other crypto providers. For JDK 1.4 this is detailed on
Sun's web site.

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/
http://java.sun.com/j2se/1.4/docs/guide/security/jce/JCERefGuide.html
http://www.bouncycastle.org/
http://www.mozilla.org/projects/security/pki/jss/
http://www.bouncycastle.org/
http://java.sun.com/j2se/1.4/docs/guide/security/jce/JCERefGuide.html#InstallProvider

Apache™ FOP: PDF encryption.

Page 5/5PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

If you have any experience with Mozilla JSS or any other cryptography provider, please post it to the
fop-user list.

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

	Table of contents
	1 Overview
	2 Usage (command line)
	3 Usage (embedded)
	4 Environment
	5 Installing a crypto provider

