
PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

Apache™ FOP Design: Renderers

Version 1298724

by Keiron Liddle

Table of contents

1 Introduction.. 2

2 Design Issues..2

 2.1 Renderers are Responsible..2

 2.2 Send Output to a Stream.. 2

3 Fonts... 2

4 Render Context...2

5 XML Handling... 2

6 Extensions...3

7 Renderer Implementations... 3

8 Adding a Renderer... 4

9 Multiple Renderers...5

10 Status...5

 10.1 To Do.. 5

 10.2 Work In Progress.. 5

 10.3 Completed... 5

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache™ FOP Design: Renderers

Page 2/5PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

1 Introduction

A renderer is primarily designed to convert a given area tree into the output document format. It should
be able to produce pages and fill the pages with the text and graphical content. Usually the output is sent
to an output stream.

Some output formats may support extra information that is not available from the area tree or depends on
the destination of the document.

Each renderer is given an area tree to render to its output format. The area tree is simply a representation
of the pages and the placement of text and graphical objects on those pages.

The renderer will be given each page as it is ready and an output stream to write the data out. All pages are
supplied in the order they appear in the document. In order to save memory it is possble to render the pages
out of order. Any page that is not ready to be rendered is setup by the renderer first so that it can reserve
a space or reference for when the page is ready to be rendered.The renderer is responsible for managing
the output format and associated data and flow.

2 Design Issues

2.1 Renderers are Responsible

Each renderer is totally responsible for its output format.

2.2 Send Output to a Stream

3 Fonts

Because font metrics (and therefore layout) are obtained in two different ways depending on the renderer,
the renderer actually sets up the fonts being used. The font metrics are used during the layout process to
determine the size of characters.

4 Render Context

The render context is used by handlers. It contains information about the current state of the renderer, such
as the page, the position, and any other miscellanous objects that are required to draw into the page.

5 XML Handling

A document may contain information in the form of XML for an image or instream foreign object. This
XML is handled through the user agent. A standard extension for PDF is the SVG handler.

If there is XML in the SVG namespace it is given to the handler which renders the SVG into the pdf
document at the given location. This separation means that other XML handlers can easily be added.

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache™ FOP Design: Renderers

Page 3/5PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

6 Extensions

Document level extensions are handled with an extension handler. This handles the information from the
AreaTree and adds renders it to the document. An example is the pdf bookmarks. This information first
needs to have all references resolved. Then the extension handler is ready to put the information into the
pdf document.

7 Renderer Implementations

Name Type Font Source Font Embedding? Out of Order
Rendering?

Notes

PDF Paginated FOP Yes Yes Uses the
PDFDocument
classes to create
a PDF document.
Most of the work
is to insert text
or create lines.
SVG is handled by
the XML handler
that uses the
PDFGraphics2D
and batik to draw
the svg into the pdf
page.

PostScript Paginated FOP Not implemented ? Similar to PDF.

PCL Paginated FOP ? ? Similar to PDF.

SVG Paginated ? ? ? Creates a single
svg document
that contains
all the pages
rendered with
page sequences
horizontally and
pages vertically.
Adds links
between the pages
so that it can be
viewed by clicking
on the page to go to
the next page.

TXT Paginated N/A N/A No Outputs to a text
document.

AWT Paginated AWT N/A ? This draws the
pages into an
AWT graphic.

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache™ FOP Design: Renderers

Page 4/5PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

Name Type Font Source Font Embedding? Out of Order
Rendering?

Notes

XML Paginated FOP No No Creates an XML
file that represents
the AreaTree.

Print Paginated AWT ? No Prints the
document using
the java printing
facitlities. The
AWT rendering is
used to draw the
pages onto the
printjob.

RTF Structural N/A N/A No Structural format
uses a different
rendering
mechanism.

MIF Structural N/A N/A No Structural format
uses a different
rendering
mechanism.

8 Adding a Renderer

You can add other renderers by implementing the Renderer interface. However, the AbstractRenderer
does most of what is needed, including iterating through the tree parts, so it is probably better to extend
this. This means that you only need to implement the basic functionality such as text, images, and lines.
AbstractRenderer's methods can easily be overridden to handle things in a different way or do some extra
processing.

The relevent AreaTree structures that will need to be rendered are:

• Page
• Viewport
• Region
• Span
• Block
• Line
• Inline

A renderer implementation does the following:

• render each individual page
• clip and align child areas to a viewport
• handle all types of inline area, text, image etc.
• draw various lines and rectangles

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache™ FOP Design: Renderers

Page 5/5PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

9 Multiple Renderers

The layout of the document depends mainly on the font being used. If two renderers have the same font
metrics then it is possible to use the same Area Tree to render both. This can be handled by the AreaTree
Handler.

10 Status

10.1 To Do

10.2 Work In Progress

10.3 Completed

• new renderer model
• new interface for structured documents, rtf and mif
• added handlers for xml in renderer

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

	Table of contents
	1 Introduction
	2 Design Issues
	2.1 Renderers are Responsible
	2.2 Send Output to a Stream

	3 Fonts
	4 Render Context
	5 XML Handling
	6 Extensions
	7 Renderer Implementations
	8 Adding a Renderer
	9 Multiple Renderers
	10 Status
	10.1 To Do
	10.2 Work In Progress
	10.3 Completed

