Apache™ FOP: Events/Processing
Feedback

$Revision$

Table of contents
I g1 0o 1o (o] o RSP
2 THE CONSUMET SIOB......ueiuirueeiieiesie sttt sttt ettt e et e e bbbt ae et e e et e besb e bt e bt e bt eb e e st e e e s e eenbenbenreens
2.1 WIItING @N EVENTLISIENE ..ottt sttt sb et e e b b nne e
2.2 AddiNG 8N EVENELISIENET ..ottt e bbb e ene e
2.3 An additional liStener EXaAMPIE.........coiiiiiiieeie e
3 The producer side (for FOP dEVEIOPEIS)........ccouiiiiiiiieiieesiee sttt st s e reesnne e
3.1 Producing and SENAiNG @N @VENL..........cceeiiiieieee ettt et e e te e s reere e e sneenne s
3.2 The EVeNntProdUCEr INTEITACE.........ciiieeeiise ettt
3.3 THE BVENT MOUEL......c. ettt sr e st et esse e beeneesreesseeneeeneenseeneas
B4 EVENE SEBVEITTY ..ttt bbb ettt e e R e R R bRt Rt e e n e E R e reerenne s
3.5 Plug-ins to the event SUDSYSIEM...........ooiee e e e
I Moo= [z (o] o TN (00 0) TSP

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache™ FOP: Events/Processing Feedback

1 Introduction

In versions until 0.20.5, Apache™ FOP used Avalon-style Logging where it was possible to supply a
logger per processing run. During the redesign the logging infrastructure was switched over to Commons
Logging which is (like Log4J or java.util.logging) a "static" logging framework (the logger is accessed
through static variables). This madeit very difficult in amulti-threaded system to retrieve information for
asingle processing run.

With FOP's event subsystem, we'd like to close this gap again and even go further. The first point is to
realize that we have two kinds of "logging". Firstly, we have the logging infrastructure for the (FOP)
devel oper who needsto be ableto enable finer log messagesfor certain parts of FOPto track down acertain
problem. Secondly, we have the user who would like to be informed about missing images, overflowing
lines or substituted fonts. These messages (or events) are targeted at |ess technical people and may ideally
belocalized (tranglated). Furthermore, tool and solution builderswould liketo integrate FOP into their own
solutions. For example, an FO editor should be able to point the user to the right place where a particular
problem occurred while developing a document template. Finally, some integrators would like to abort
processing if aresource (an image or afont) has not been found, while others would simply continue. The
event system allows to react on these events.

On this page, we won't discuss logging as such. We will show how the event subsystem can be used for
various tasks. We'l first look at the event subsystem from the consumer side. Finally, the production of
eventsinside FOP will be discussed (thisis mostly interesting for FOP developers only).

2 The consumer side

The event subsystem islocated in the or g. apache. f op. event s package and its base is the Event
class. An instance is created for each event and is sent to a set of Event Li st ener instances by the
Event Br oadcast er . AnEvent contains:

 aneventlID,

* asource object (which generated the event),

* aseverity level (Info, Warning, Error and Fatal Error) and
* amap of named parameters.

The Event For matt er class can be used to trandate the events into human-readable, localized
messages.

A full example of what is shown here can be found in the exanpl es/ enbeddi ng/j ava/
enbeddi ng/ event s directory in the FOP distribution. The example can aso be accessed via the web.

2.1 Writing an EventListener

The following code sample shows a very simple EventListener. It basically just sends all events to
System.out (stdout) or System.err (stderr) depending on the event severity.

i mport org. apache. fop. events. Event ;

i mport org.apache. fop. events. Event Formatter;

i mport org.apache. fop. event s. Event Li st ener;

i mport org.apache. fop. event s. nodel . Event Severity;

/[** A sinple event |istener that wites the events to stdout and stderr. */

Page 2/8

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/
http://excalibur.apache.org/framework/index.html
http://commons.apache.org/logging/
http://commons.apache.org/logging/
http://svn.apache.org/viewvc/xmlgraphics/fop/trunk/examples/embedding/java/embedding/events/

Apache™ FOP: Events/Processing Feedback

You can see that for every event the method pr ocessEvent of the Event Li st ener will be
called. Inside this method you can do whatever processing you would like including throwing a
Runt i meExcept i on, if you want to abort the current processing run.

The code above also shows how you can turn an event into a human-readable, localized message that can
be presented to a user. The Event For mat t er class does this for you. It provides additional methods
if you'd like to explicitly specify thelocale.

Itispossibleto gather all eventsfor awhole processing run so they can be evaluated afterwards. However,
care should be taken about memory consumption since the events provide references to objectsinside FOP
which may themselves have references to other objects. So holding on to these objects may mean that
whole object trees cannot be released!

2.2 Adding an EventListener

To register the event listener with FOP, get the Event Br oadcast er which is associated with the user
agent (FOUser Agent) and add it there:

Please note that thisis done separately for each processing run, i.e. for each new user agent.
2.3 An additional listener example

Here's an additional example of an event listener:

By default, FOP continues processing even if an image wasn't found. If you have more strict requirements
and want FOP to stop if an image is not available, you can do something like the following in the simplest
case:

Page 3/8

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache™ FOP: Events/Processing Feedback

Increasing the event severity to FATAL will signal the event broadcaster to throw an exception and stop
further processing. In the above case, all resource-related events will cause FOP to stop processing.

You can aso customize the exception to throw (you can may throw a RuntimeException or subclass
yourself) and/or which event to respond to:

This throws a Runt i meExcepti on with the Fi | eNot FoundExcepti on as the cause. Further
processing effectively stops in FOP. You can catch the exception in your code and react as you see

necessary.
3 The producer side (for FOP developers)

Thissection is primarily for FOP and FOP plug-in devel opers. It describes how to use the event subsystem
for producing events.

The event package has been designed in order to be theoretically useful for use cases outside FOP. If you think this
isinteresting independently from FOP, please talk to us.

3.1 Producing and sending an event

Thebasicsarevery simple. Just instantiate an Event object and fill it with the necessary parameters. Then
pass it to the Event Br oadcast er which distributes the events to the interested listeneners. Here's a
code example:

Page 4/8

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/
mailto:fop-dev@xmlgraphics.apache.org

Apache™ FOP: Events/Processing Feedback

TheEvent . par ansBui | der () isafluent interface to help with the build-up of the parameters. Y ou
could just aswell instantiate aMap (Map<St ri ng, Obj ect >) and fill it with values.

3.2 The EventProducer interface

To simplify event production, the event subsystem provides the Event Pr oducer interface. You can
create interfaces which extend Event Pr oducer . These interfaces will contain one method per event
to be generated. By contract, each event method must have as its first parameter a parameter named
"source" (Type Object) which indicates the object that generated the event. After that come an arbitrary
number of parameters of any type as needed by the event.

The event producer interface does not need to have any implementation. The implementation is produced
at runtime by adynamic proxy created by Def aul t Event Br oadcast er . The dynamic proxy creates
Event instances for each method call against the event producer interface. Each parameter (except
"source") is added to the event's parameter map.

To simplify the code needed to get an instance of the event producer interface it is suggested to create a
public inner provider classinside the interface.

Here's an example of such an event producer interface:

public interface MyEvent Producer extends Event Producer {
public class Provider {

public static MyEvent Producer get (Event Broadcaster broadcaster) {
return (M/Event Producer) broadcast er. get Event Producer For (MyEvent Pr oducer . cl ass) ;
}

}
/

*
Conpl ai n about sonet hi ng.
@ar am source the event source
@ar am reason the reason for the conpl aint
@ar am bl ah the conpl ai nt
* @vent.severity WARN
*/
voi d conpl ai n(Cbj ect source, String reason, int blah);

*OF F F F

}
To produce the same event asin the first example above, you'd use the following code:

Event Broadcast er broadcaster = [get it from sonewhere];
Test Event Producer producer = Test Event Producer. Provi der. get (broadcaster);
producer. conplain(this, "lI'mtired", 23);

3.3 The event model

Inside an invocation handler for a dynamic proxy, there's no information about the names of each
parameter. The JVM doesn't provide it. The only thing you know is the interface and method name.
In order to properly fill the Event 's parameter map we need to know the parameter names. These
are retrieved from an event object model. This is found in the or g. apache. f op. event s. nodel

package. The data for the object model is retrieved from an XML representation of the event model
that is loaded as a resource. The XML representation is generated using an Ant task at build

Page 5/8

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/
http://en.wikipedia.org/wiki/Fluent_interface

Apache™ FOP: Events/Processing Feedback

time (ant resour cegen). The Ant task (found in src/ codegen/ j ava/ or g/ apache/ f op/
t ool s/ Event Producer Col | ect or Task. j ava) scans FOP's sources for descendants of the
Event Pr oducer interface and uses QDox to parse these interfaces.

The event model XML files are generated during build by the Ant task mentioned above
when running the "resourcegen" task. So just run "ant resour cegen” if you receive a
M ssi ngResour ceExcept i on at runtimeindicating that " event - nodel . xm " ismissing.

Primarily, the QDox-based collector task records the parameters names and types. Furthermore, it extracts
additional attributes embedded as Javadoc comments from the methods. At the moment, the only such
attribute is " @event.severity" which indicates the default event severity (which can be changed by event
listeners). The example event producer above shows the Javadocs for an event method.

There'sone moreinformation that is extracted from the event producer information for the event model: an
optional primary exception. Thefirst exceptioninthe"throws" declaration of an event method isnoted. Itis
used to throw an exception from theinvocation handler if the event hasan event severity of "FATAL" when
all listeners have been called (listeners can update the event severity). Please note that an implementation
of org. apache. f op. event s. Event Except i onManager $Excepti onFact ory has to be
registered for the Event Except i onManager to be able to construct the exception from an event.

For agiven application, there can be multiple event models active at the same time. In FOP, each renderer
is considered to be a plug-in and provides its own specific event model. The individual event models are
provided through an Event Mbdel Fact ory. Thisinterface is implemented for each event model and
registered through the service provider mechanism (see the plug-ins section for details).

3.4 Event severity

Four different levels of severity for events has been defined:

1. INFO: informational only

2. WARN: aWarning

3. ERROR: an error condition from which FOP can recover. FOP will continue processing.
4. FATAL: afata error which causes an exception in the end and FOP will stop processing.

Event listeners can choose to ignore certain events based on their event severity. Please note that you may
recieve an event "twice" in a specific case: if there is afatal error an event is generated and sent to the
listeners. After that an exception is thrown with the same information and processing stops. If the fatal
event is shown to the user and the following exception is equally presented to the user it may appear that
the event is duplicated. Of course, the same information is just published through two different channels.

3.5 Plug-ins to the event subsystem

The event subsystem is extensible. There are a number of extension points:

 org.apache. fop. events. nodel . Event Mbdel Fact or y: Provides an event model to the
event subsystem.

 org.apache. fop. events. Event Except i onManager $Except i onFact ory: Creates
exceptions for events, i.e. turns an event into a specific exception.

Page 6/8

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/
http://qdox.codehaus.org/

Apache™ FOP: Events/Processing Feedback

The names in bold above are used as filenames for the service provider filesthat are placed in the META-
| NF/ servi ces directory. That way, they are automatically detected. This is a mechanism defined by
the JAR file specification.

3.6 Localization (L10n)

One goa of the event subsystem was to have localized (trandated) event messages. The
Event Format t er class can be used to convert an event to a human-readable message. Each
Event Pr oducer can provideits own XML-based trandation file. If there is none, a central translation
fileisused, called "EventFormatter.xml" (found in the same directory asthe Event For mat t er class).

The XML format used by the Event For mat t er isthe same as Apache Cocoon's catalog format. Here's
an example:

<?xm version="1.0" encodi ng="UTF-8"?>
<cat al ogue xmnl :|ang="en">
<nessage key="| ocator">
[(See position {loc})| (See {#gatherContextlnfo})| (No context info available)]
</ nessage>
<nessage key="org.apache. fop.render.rtf.RTFEvent Producer. expli cit Tabl eCol umsRequi red" >
RTF output requires that all table-colums for a table are defined. Qutput will be incorrect.
{{l ocator}}
</ nessage>
<nessage key="org.apache.fop.render.rtf.RTFEvent Producer. i gnor edDef err edEvent ">
I gnored deferred event for {node} ({start,if,start,end}).{{locator}}
</ nessage>
</ cat al ogue>

The example (extracted from the RTF handler's event producer) has message templates
for two event methods. The class used to do variable replacement in the templates is
org. apache. fop. util.text. AdvancedMessageFor mat which is more powerful than the
MessageFor mat classes provided by the Javaclasslibrary (j ava. uti | . t ext package).

"locator" is a template that is reused by the other message templates by referencing it through
"{{locator}}". Thisis some kind of include command.

Normal event parameters are accessed by name inside single curly braces, for example: "{node}". For
objects, thisformat just usesthet oSt r i ng() method to turn the object into a string, unless thereis an
hj ect For mat t er registered for that type (there's an examplefor or g. xml . sax. Locat or).

The single curly braces pattern supports additional features. For example, it is possible to do this:
"{start,if start,end}". "if" here is a specia field modifier that evaluates "start" as a boolean and if that is
true returns the text right after the second comma ("start"). Otherwise it returns the text after the third
comma ("end"). The "equals' modifier is similar to "if" but it takes as an additional (comma-separated)
parameter right after the "equals' modifier, a string that is compared to the value of the variable. An
example: { severity,equals,EventSeverity:FATAL,,some text} (this adds "some text" if the severity is not
FATAL).

Additional such modifiers can be added by implementing the AdvancedMessageFor mat $Part and
AdvancedMessageFor mat $Par t Fact or y interfaces.

Square braces can be used to specify optional template sections. The whole section will be omitted if any
of the variables used within are unavailable. Pipe (|) characters can be used to specify aternative sub-
templates (see "locator" above for an example).

Page 7/8

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/
http://java.sun.com/j2se/1.4.2/docs/guide/jar/jar.html#Service%20Provider
http://cocoon.apache.org/

Apache™ FOP: Events/Processing Feedback

Developers can also register a function (in the above example: {#gat her Cont ext | nf 0})
to do more complex information rendering. These functions are implementations of the
AdvancedMessageFor mat $Functi on interface. Please take care that this is done in a locale-

independent way as there is no locale information available, yet.

Page 8/8

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

	Table of contents
	1 Introduction
	2 The consumer side
	2.1 Writing an EventListener
	2.2 Adding an EventListener
	2.3 An additional listener example

	3 The producer side (for FOP developers)
	3.1 Producing and sending an event
	3.2 The EventProducer interface
	3.3 The event model
	3.4 Event severity
	3.5 Plug-ins to the event subsystem
	3.6 Localization (L10n)

