
PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

Apache™ FOP: Graphics Formats

Version 1357883

Table of contents

1 Introduction.. 2

2 Overview of Graphics Support.. 2

 2.1 Map of supported image formats by output format... 3

3 Graphics Packages..4

 3.1 XML Graphics Commons Native...4

 3.2 FOP Native... 4

 3.3 Apache Batik.. 4

 3.4 Image I/O.. 5

4 Details on image formats...5

 4.1 BMP.. 5

 4.2 EMF.. 5

 4.3 EPS..5

 4.4 GIF.. 5

 4.5 JPEG..5

 4.6 PNG...5

 4.7 SVG...6

 4.8 TIFF.. 7

 4.9 WMF... 8

5 Graphics Resolution... 8

6 Page selection for multi-page formats... 8

7 Image caching.. 8

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

Apache™ FOP: Graphics Formats

Page 2/8PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

1 Introduction

Some noteworthy features of the image handling subsystem are:

• The image libraries Jimi and JAI are not supported. Instead, Apache™ FOP uses the Image I/O API
that was introduced with Java 1.4 for all bitmap codecs.

• Some bitmap images are not converted to a standardized 24 bit RGB image but are instead handled
in their native format.

• A plug-in mechanism offers a possibility to add support for new formats without changing the FOP's
source code.

The actual image loading framework does not reside in Apache FOP, but in XML Graphics Commons.

2 Overview of Graphics Support

The table below summarizes the theoretical support for graphical formats within FOP. In other words,
within the constraints of the limitations listed here, these formats should work. However, many of them
have not been tested, and there may be limitations that have not yet been discovered or documented. The
packages needed to support some formats are not included in the FOP distribution and must be installed
separately. Follow the links in the "Support Through" columns for more details.

Support ThroughFormat Type

Apache FOP (native) Apache Batik Image I/O

BMP (Microsoft
Windows Bitmap)

bitmap X [1]

EMF (Windows
Enhanced Metafile)

vector (with embedded
bitmaps)

(X)

EPS (Encapsulated
PostScript)

metafile (both bitmap
and vector), most
frequently used for
vector drawings

(X)

GIF (Graphics
Interchange Format)

bitmap X

JPEG (Joint
Photographic Experts
Group)

bitmap (X) X

PNG (Portable
Network Graphic)

bitmap (X) X

SVG (Scalable Vector
Graphics)

vector (with embedded
bitmaps)

X

TIFF (Tag Image
Format File)

bitmap (X) X [1]

WMF (Windows
Metafile)

vector (with embedded
bitmaps)

(X)

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/commons/image-loader.html
http://xmlgraphics.apache.org/commons/

Apache™ FOP: Graphics Formats

Page 3/8PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

Legend:

• "(X)" means restricted support. Please see the details below.
• [1]: Requires the presence of JAI Image I/O Tools (or an equivalent Image I/O compatible codec)

in the classpath. JAI Image I/O Tools also adds support for JPEG 2000, WBMP, RAW and PNM.
Other Image I/O codecs may provide support for additional formats.

Note:

JAI Image I/O Tools is not the same as the JAI library! The former simply exposes JAI's codecs using the
Image I/O API but does not include all the image manipulation functionality.

2.1 Map of supported image formats by output format

Not all image formats are supported for all output formats! For example, while you can use EPS
(Encapsulated PostScript) files when you generate PostScript output, this format will not be supported by
any other output format. Here's an overview of which image formats are supported by which output format:

Image Format PDF PostScript Java2D, PNG,
TIFF, AWT

PCL AFP RTF

BMP
(Microsoft
Windows
Bitmap)

X X X X X X

EMF
(Windows
Enhanced
Metafile)

X [1]

EPS
(Encapsulated
PostScript)

X [1]

GIF (Graphics
Interchange
Format)

X X X X X X

JPEG (Joint
Photographic
Experts Group)

X [1] X [1] X X X [1] X

PNG (Portable
Network
Graphic)

X [2] X [2] X X X X

SVG (Scalable
Vector
Graphics)

X X X X X X

TIFF (Tag
Image Format
File)

X [2] X [2] X X X [2] X

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/
http://jai-imageio.dev.java.net/
http://jai-imageio.dev.java.net/
http://java.sun.com/javase/technologies/desktop/media/jai/

Apache™ FOP: Graphics Formats

Page 4/8PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

Image Format PDF PostScript Java2D, PNG,
TIFF, AWT

PCL AFP RTF

WMF
(Windows
Metafile)

X X X X X X

Legend:

• [1]: Supported without the need to decode the image.
• [2]: Supported without the need to decode the image, but only for certain subtypes.

3 Graphics Packages

3.1 XML Graphics Commons Native

XML Graphics Commons supports a number of graphic file formats natively as basic functionality: all
bitmap formats for which there are Image I/O codecs available (JPEG, PNG, GIF, TIFF, etc.), EPS and
EMF.

3.2 FOP Native

FOP has no native image plug-ins for the image loading framework of its own but currently hosts the
Batik-dependent SVG and WMF plug-ins until they can be moved to Apache Batik.

3.3 Apache Batik

Apache Batik will later receive the SVG and WMF plug-ins for the image loading framework that are
currently hosted inside FOP.

Current FOP distributions include a distribution of the Apache Batik. Because Batik's API changes
frequently, it is highly recommended that you use the version that ships with FOP, at least when running
FOP.

Warning:

Batik must be run in a graphical environment.

Batik must be run in a graphical environment. It uses AWT classes for rendering SVG, which in turn
require an X server on Unixish systems. If you run a server without X, or if you can't connect to the X
server due to security restrictions or policies (a so-called "headless" environment), SVG rendering will fail.

Here are some workarounds:

• Start Java with the -Djava.awt.headless=true command line option.
• Install an X server which provides an in-memory framebuffer without actually using a screen device

or any display hardware. One example is Xvfb.
• Install a toolkit which emulates AWT without the need for an underlying X server. One example is

the PJA toolkit, which is free and comes with detailed installation instructions.

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/commons/
http://xmlgraphics.apache.org/batik/
http://xmlgraphics.apache.org/batik/
http://xmlgraphics.apache.org/batik/
http://www.eteks.com/pja/en

Apache™ FOP: Graphics Formats

Page 5/8PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

3.4 Image I/O

The image loading framework in XML Graphics Commons provides a wrapper to load images through
the JDK's Image I/O API (JSR 015). Image I/O allows to dynamically add additional image codecs. An
example of such an add-on library are the JAI Image I/O Tools available from Sun.

4 Details on image formats

4.1 BMP

BMP images are supported through an Image I/O codec. There may be limitations of the codec which are
outside the control of Apache FOP.

4.2 EMF

Windows Enhanced Metafiles (EMF) are only supported in RTF output where they are embedded without
decoding.

4.3 EPS

Apache FOP allows to use EPS files when generating PostScript output only.

Other output targets can't be supported at the moment because FOP lacks a PostScript interpreter.
Furthermore, FOP is currently not able to parse the preview bitmaps sometimes contained in EPS files.

4.4 GIF

GIF images are supported through an Image I/O codec. Transparency is supported but not
guaranteed to work with every output format.

4.5 JPEG

FOP native support (i.e. the handling of undecoded images) of JPEG does not include all variants,
especially those containing unusual color lookup tables and color profiles. If you have trouble with a JPEG
image in FOP, try opening it with an image processing program (such as Photoshop or Gimp) and then
saving it. Specifying 24-bit color output may also help. For the PDF and PostScript renderers most JPEG
images can be passed through without decompression. User reports indicate that grayscale, RGB, and
CMYK color spaces are all rendered properly. However, for other output formats, the JPEG images have
to be decompressed. Tests have shown that there are some limitation in some Image I/O codecs
concerning images in the CMYK color space. Work-arounds are in place but may not always work as
expected.

4.6 PNG

FOP native support of PNG only includes the variants with 8 bits per channel and without interlacing.
Native support requires using the ImageLoaderRawPNG image loader. Support through a Image I/O codec
can use either the internal XGC PNG codec or the JRE PNG codec. The associated image loaders are,

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/commons/
http://java.sun.com/j2se/1.4.2/docs/guide/imageio/index.html
http://java.sun.com/products/java-media/jai/

Apache™ FOP: Graphics Formats

Page 6/8PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

respectively, ImageLoaderPNG and ImageLoaderImageIO. Transparency is supported but not guaranteed
to work with every output format.

4.7 SVG

4.7.1 Introduction

FOP uses Apache Batik for SVG support. This format can be handled as an fo:instream-foreign-
object or in a separate file referenced with fo:external-graphic.

Note:

Batik's SVG Rasterizer utility may also be used to convert standalone SVG documents into PDF. For more
information please see the SVG Rasterizer documentation on the Batik site.

4.7.2 Placing SVG Graphics into PDF

The SVG is rendered into PDF by using PDF commands to draw and fill lines and curves. This means that
the graphical objects created with this remain as vector graphics. The same applies to PostScript output.
For other output formats the SVG graphic may be converted to a bitmap image.

There are a number of SVG things that cannot be converted directly into PDF. Parts of the graphic such
as effects, patterns and images are inserted into the PDF as a raster graphic. The resolution of these raster
images can be controlled through the "target resolution" setting in the configuration.

Currently transparency is limited in PDF so some SVG images that contain effects or graphics with
transparent areas may not be displayed correctly.

4.7.3 Placing SVG Text into PDF and PostScript

If possible, Batik will use normal PDF or PostScript text when inserting text. It does this by checking if the
text can be drawn normally and the font is supported. This example svg text.svg / text.pdf / text.png shows
how various types and effects with text are handled. Note that SVG font support is not yet implemented.
Furthermore, text handling in PostScript output is inferior to PDF output - more text will be painted as
shapes in PS than in PDF.

When there's no support to paint text using native text operations, text is converted and drawn as a set of
shapes by Batik, using the stroking text painter. This means that a typical character will have about 10
curves (each curve consists of at least 20 characters). This can make the output files large and when it
is viewed the viewer may not normally draw those fine curves very well (In Adobe Acrobat, turning on
"Smooth Line Art" in the preferences will fix this). Copy/paste functionality will not be supported in this
case. If the text is inserted into the output file using the inbuilt text commands it will use a single character.

Note that because SVG text can be rendered as either text or a vector graphic, you may need to consider
settings in your viewer for both. The Acrobat viewer has both "smooth line art" and "smooth text" settings
that may need to be set for SVG images to be displayed nicely on your screen (see Edit / Preferences /
Display). This setting will not affect the printing of your document, which should be OK in any case, but
will only affect the quality of the screen display.

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/batik/svgrasterizer.html
configuration.html
../dev/svg/text.svg
../dev/svg/text.png

Apache™ FOP: Graphics Formats

Page 7/8PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

4.7.4 Font selection notes

Apache Batik uses the AWT/Java2D subsystem as font source while FOP has its own font subsystem.
Great care has been taken that font selection does the best possible choices. But it must be noted when
creating PDF or PostScript that a font used in SVG graphics needs to be registered with the operating
system as well as in FOP's configuration. By using FOP's font auto-detection, you simply have to install
the font in the operating system and not care about anything else. This is less of an issue if you create
formats like TIFFs, PNGs or PCL because in these cases SVG graphics are usually rendered to bitmaps
which means that on both sides (Batik and FOP), AWT/Java2D is used as the single font source.

Whenever an SVG is converted into a PDF or PostScript file, the font that has been used inside Batik has
to be mapped to a font used by the actual output format. Features like font substitution in FOP may need
to be taken into account but can also be an advantage when working around font mapping issues. Like for
XSL-FO content, you'll get a warning if a particular font could not be found and had to be substituted, or
if a particular glyph is missing in a font.

4.7.5 Scaling

Currently, SVG images are rendered with the dimensions specified in the SVG file, within the viewport
specified in the fo:external-graphic element. For everything to work properly, the two should be equal.
The SVG standard leaves this issue as an implementation detail. Additional scaling options are available
through XSL-FO means.

If you use pixels to specify the size of an SVG graphic the "source resolution" setting in the configuration
will be used to determine the size of a pixel. The use of pixels to specify sizes is discouraged as they may
be interpreted differently in different environments.

4.7.6 Known Problems

• Soft mask transparency is combined with white so that it looks better on PDF 1.3 viewers but this
causes the soft mask to be slightly lighter or darker on PDF 1.4 viewers.

• There is some problem with a gradient inside a pattern which may cause a PDF error when viewed in
Acrobat 5.

• Text is not always handled correctly, it may select the wrong font especially if characters have
multiple fonts in the font list.

• Uniform transparency for images and other SVG elements that are converted into a raster graphic are
not drawn properly in PDF. The image is opaque.

4.8 TIFF

FOP can embed TIFF images without decompression into PDF, PostScript and AFP if they have either
CCITT T.4, CCITT T.6, or JPEG compression. Otherwise, a TIFF-capable Image I/O codec is
necessary for decoding the image.

There may be some limitation concerning images in the CMYK color space.

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/
configuration.html

Apache™ FOP: Graphics Formats

Page 8/8PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

4.9 WMF

Windows Metafiles (WMF) are supported through classes in Apache Batik. At the moment, support for
this format is experimental and may not always work as expected.

5 Graphics Resolution

Some bitmapped image file formats store a dots-per-inch (dpi) or other resolution values. FOP tries to
use this resolution information whenever possible to determine the image's intrinsic size. This size is used
during the layout process when it is not superseded by an explicit size on fo:external-graphic (content-
width and content-height properties).

Please note that not all images contain resolution information. If it's not available the source resolution set
on the FopFactory (or through the user configuration XML) is used. The default here is 72 dpi.

Bitmap images are generally embedded into the output format at their original resolution (as is). No
resampling of the image is performed. Explicit resampling is on our wishlist, but hasn't been implemented,
yet. Bitmaps included in SVG graphics may be resampled to the resolution specified in the "target
resolution" setting in the configuration if SVG filters are applied. This can be used as a work-around to
resample images in FO documents.

6 Page selection for multi-page formats

Some image formats such as TIFF support multiple pages/sub-images per file. You can select a particular
page using a special URI fragment in the form: <uri>#page=<nr> (for example: http://localhost/
images/myimage.tiff#page=3)

7 Image caching

FOP caches images between runs. There is one cache per FopFactory instance. The URI is used as a key to
identify images which means that when a particular URI appears again, the image is taken from the cache.
If you have a servlet that generates a different image each time it is called with the same URI you need to
use a constantly changing dummy parameter on the URI to avoid caching.

The image cache has been improved considerably in the redesigned code. Therefore, resetting the image
cache should be a thing of the past. If you still experience OutOfMemoryErrors, please notify us.

If all else fails, the image cache can be cleared like this:
fopFactory.getImageManager().getCache().clearCache();

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/batik/
configuration.html

	Table of contents
	1 Introduction
	2 Overview of Graphics Support
	2.1 Map of supported image formats by output format

	3 Graphics Packages
	3.1 XML Graphics Commons Native
	3.2 FOP Native
	3.3 Apache Batik
	3.4 Image I/O

	4 Details on image formats
	4.1 BMP
	4.2 EMF
	4.3 EPS
	4.4 GIF
	4.5 JPEG
	4.6 PNG
	4.7 SVG
	4.7.1 Introduction
	4.7.2 Placing SVG Graphics into PDF
	4.7.3 Placing SVG Text into PDF and PostScript
	4.7.4 Font selection notes
	4.7.5 Scaling
	4.7.6 Known Problems

	4.8 TIFF
	4.9 WMF

	5 Graphics Resolution
	6 Page selection for multi-page formats
	7 Image caching

