Top
Back: Hilbert function
Forward: Characteristic sets
FastBack: Mathematical background
FastForward: SINGULAR libraries
Up: Mathematical background
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

C.3 Syzygies and resolutions

Syzygies

Let 53#53 be a quotient of 657#657 and let 658#658 be a submodule of 622#622. Then the module of syzygies (or 1st syzygy module, module of relations) of 251#251, syz(251#251), is defined to be the kernel of the map 659#659.

The k-th syzygy module is defined inductively to be the module of syzygies of the 660#660-stsyzygy module.

Note, that the syzygy modules of 251#251 depend on a choice of generators 661#661. But one can show that they depend on 251#251 uniquely up to direct summands.

Example:
 
  ring R= 0,(u,v,x,y,z),dp;
  ideal i=ux, vx, uy, vy;
  print(syz(i));
==> -y,0, -v,0, 
==> 0, -y,u, 0, 
==> x, 0, 0, -v,
==> 0, x, 0, u  

Free resolutions

Let 662#662 and 663#663. A free resolution of 13#13 is a long exact sequence
664#664

where the columns of the matrix 166#166generate 251#251. Note that resolutions need not to be finite (i.e., of finite length). The Hilbert Syzygy Theorem states that for 621#621there exists a ("minimal") resolution of length not exceeding the number of variables.

Example:
 
  ring R= 0,(u,v,x,y,z),dp;
  ideal I = ux, vx, uy, vy;
  resolution resI = mres(I,0); resI;
==>  1      4      4      1      
==> R <--  R <--  R <--  R
==> 
==> 0      1      2      3      
==> 
  // The matrix A_1 is given by
  print(matrix(resI[1]));
==> vy,uy,vx,ux
  // We see that the columns of A_1 generate I.
  // The matrix A_2 is given by
  print(matrix(resI[3]));
==> u, 
==> -v,
==> -x,
==> y  

Betti numbers and regularity

Let 53#53 be a graded ring (e.g., 621#621) and let 665#665 be a graded submodule. Let
666#666
be a minimal free resolution of 667#667 considered with homogeneous maps of degree 0. Then the graded Betti number 668#668 of 667#667 is the minimal number of generators 669#669 in degree 172#172 of the 55#55-th syzygy module of 667#667 (i.e., the 670#670-st syzygy module of 251#251). Note that, by definition, the 2#2-th syzygy module of 667#667 is 622#622 and the 1st syzygy module of 667#667 is 251#251.

The regularity of 251#251 is the smallest integer 177#177 such that

671#671

Example:
 
  ring R= 0,(u,v,x,y,z),dp;
  ideal I = ux, vx, uy, vy;
  resolution resI = mres(I,0); resI;
==>  1      4      4      1      
==> R <--  R <--  R <--  R
==> 
==> 0      1      2      3      
==> 
  // the betti number:
  print(betti(resI), "betti");
==>            0     1     2     3
==> ------------------------------
==>     0:     1     -     -     -
==>     1:     -     4     4     1
==> ------------------------------
==> total:     1     4     4     1
==> 
  // the regularity:
  regularity(resI);
==> 2

Top Back: Hilbert function Forward: Characteristic sets FastBack: Mathematical background FastForward: SINGULAR libraries Up: Mathematical background Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4.3.2, 2023, generated by texi2html.