
CAF Validation Test Suite
Validation Results

HPCTools Group

University of Houston,
Texas, 77004

This report provides a list of features within the Fortran-2008 specifica-
tion, that the test-codes target. It also provides the validation results of some
of the CAF compilers, namely OpenUH (v3.0.x), Cray, Intel (v13.1) and G95
(v0.93)(Sec 2).

1 Testing the CAF features within Fortran2008
specification

1.1 Categories of the Test-codes

This section outlines the different categories of tests within the suite that can
be used to evaluate a CAF compiler implementation. The primary gaol is to
determine the extent to which it supports the coaray-features of the Fortran
2008 standard in accordance with ISO/IEC 1539-1:2010 (E)[1].

There are three main categories of tests in the test suite. Each category
is located in a different subdirectory within $SUITE ROOT, and all the tests
within the same category can be executed using the makefile.

Feature Tests These tests can be found under:
$SUITE ROOT/feature tests. The tests under this category verify the support
and correctness of the implementations of the basic constructs/semantics of
CAF. The tests concentrate on the verification of the correctness of contigu-
ous and strided remote read/write operations, the coarray syntax, the use of
strided co-subscript notation, coarrays of different data types and image-query
intrinsics.

Cross Checked Feature Tests These tests can be found under:
$SUITE ROOT/crosscheck feature tests. All tests in this category verify CAF
constructs that aid in maintaining consistency and synchrnization among images.
The tests intentional compute intensive loops and forced CPU - idling (using calls
to the sleep() intrinsic) for simulating delays in progress of certain images. This
enforces an increase in the likelihood of inconsistent states (and races) in case
of incorrect implementations of the constructs being tested.

Due to the nondetermistic nature of unsynchronized images, configuration
parameters(as defined under $SUITE ROOT/config/CONFIG*) can be modi-
fied to determine the number of times the experiment passes a cross-check test.

This test-category uses cross-check -tests to verify whether the test stands the
cross test every time or not. Such cross-check - tests include the exact same code
like the original version but with certain statements deleted/replaced to identify
the change in behavior of the tests.

Note on code design: Most of the time,the modifications to the original code are in
the form of the absence of the CAF statements which are being tested in that test case.
In order to reduce redundant code, we chose to include the cross-test version and the
original version all in one file, using conditional ‘#ifdef’s and macros (e.g. CROSS) .

Detecting/Reporting of errors

– Every test includes a module called ‘crosstest’.
– The module ‘crosstest’ (defined in file testmofule.f90) includes the declaration of

an integer scalar coarray called ‘cross err’ which is modified by image with rank
1 on detecting an error. It also contains two subroutines - calc ori and calc. The
former returns the test result when the specific construct is being tested. The
latter is called by the cross-test version and returns the number of times the cross
verification passed out of total trials.

Status Tests These tests can be found under:
$SUITE ROOT/status tests. These test the correctness of the implementation
of specifiers used for handling normal and error termination. These tests include
testing the support of statevariables that flag the execution state of other images.
Here’s an excerpt describing the 2 states of image execution-termination [from
Page 23, sec. 13 of “ISO/IEC JTC1/SC22/WG5 N1824 ”[2]]:

“ ... It seems natural to allow all images to continue executing until they have
all executed a stop or end program statement, provided none of them encounters an
error condition that may be expected to terminate its execution. This is called nor-
mal termination. On the other hand, if such an error condition occurs on one image,
the computation is flawed and it is desirable to stop the other images as soon as is
practicable. This is called error termination.

Normal termination occurs in three steps: initiation, synchronization, and com-
pletion. An image initiates normal termination if it executes a stop or end program
statement. All images synchronize execution at the second step so that no image starts
the completion step until all images have finished the initiation step. The synchroniza-
tion step allows its data to remain accessible to the other images until they all reach
the synchronization step. Normal termination may also be initiated during execution
of a procedure defined by a C companion processor[a.k.a. C compiler]

An image initiates error termination if it executes a statement that would cause the

termination of a single-image program but is not a stop or end program statement. This

causes all other images that have not already initiated error termination to initiate error

termination. Within the performance limits of the processor.s ability to send signals

to other images, this propagation of error termination should be immediate. The exact

details are intentionally left processor dependent.... ”

Specific Tests If the user wants to evaluate a CAF implementation in terms
of the support to specific types of tests, the names of the tests can be specified
in the file “test file” in the directory -$SUITE ROOT/few tests.

1.2 List of Test-codes

The tests are listed in Tables 1,2, and 3. The test-files are named using the
following convention:

“<construction type> <section number>.f90”, where,

– construction type is the semantic-target of the test.
– section number is the section number in the standard to which the check belongs.

This allows or a quick look-up of the exact point to which a correct CAF imple-
mentation must adhere to.

Table 1. Feature Test files in the UH - CAF Validation Tests suite

File Description

character test.f90 CHARACTER coarrays

coarray 2.4.7.6.f90 similar translation of co-subscripts and subscripts

coarray 4.8.R468.f90 reference of coarray without [] implies local object

coarray 5.3.6.1.f90 attribute CODIMENSION + remote accesses at single
integer/real boundary

dummyargs 12.3.2.2c.f90 explicit shape, assumed size, assumed shape, allocatable
dummy args

intrin 13.7.126.f90 NUM IMAGES() returns the number of images launched

intrin 13.7.165.f90 THIS IMAGE(), THIS IMAGE(coarray),
THIS IMAGE(coarray, dim)

intrin 13.7.172.f90 LCOBOUND(coarray) and LCOBOUND(coarray,dim)

intrin 13.7.79.f90 IMAGE INDEX(coarray, subs)

intrin 13.7.91.f90 UCOBOUND(COARRAY[, DIM, KIND])

intrin 6.7.3.2.11.f90 ALLOCATE and DEALLOCATE act as barriers

item 4.8.a.f90 Subobjects of a coarray is also a coarray

pointer 4.5.4.6b.f90 association of pointer components of coarrays with local
objects

intrin 8.5.7d.f90 STOP and LOCK construct with
STAT=STAT LOCKED specifier

intrin 8.5.7e.f90 STOP and LOCK construct with
STAT=STAT LOCKED OTHER IMAGE specifier

intrin 8.5.7f.f90 STOP and LOCK construct with
STAT=STAT UNLOCKED specifier

derived 4.5.4.f90 (non-)coarray COMPONENTS of (non-)coarray derived
types

2 Validation Results of CAF Compilers

Tables 4,5, and 6 list the extent of support of coarrays in different CAF compiler
implementations as detected by the UH CAF validation test suite:

Table 2. Cross-checked Feature test files in the UH - CAF Validation Tests suite

File Description

atomic 8.5.2.f90 Atomic subroutines

critical 8.1.5.f90 CRITICAL - END CRITICAL sections

intrin 8.5.6.f90 LOCK & UNLOCK without STAT specifier

sync 8.5.3.f90 SYNC ALL without STAT specifier

sync 8.5.4a.f90 SYNC IMAGES(arr) paired with SYNC IMAGES(*)

sync 8.5.4b.f90 call to SYNC IMAGES(arr), should not behave like
SYNC ALL

Table 3. Status Test files in the UH - CAF Validation Tests suite

File Description

sync 8.5.7a.f90 STOP and SYNC ALL with
STAT=STAT STOPPED IMAGE specifier

sync 8.5.7b.f90 STOP and SYNC IMAGES(arr) with
STAT=STAT STOPPED IMAGE specifier

sync 8.5.7c.f90 STOP and SYNC IMAGES(*) with
STAT=STAT STOPPED IMAGE specifier

Table 4. Results of Feature tests

DESCRIPTION OpenUH Intel G95 Cray

CHARACTER coarrays YES YES YES YES

similar translation of co-subscripts and subscripts YES YES YES YES

reference of coarray without [] implies local object YES YES YES YES

attribute CODIMENSION + remote accesses at
single integer/real boundary

YES Exec
times out

Exec fails YES

(non-)coarray COMPONENTS of (non-)coarray
derived types

YES YES YES YES

explicit shape, assumed size, assumed shape, allo-
catable dummy arguments

YES YES comp fails YES

NUM IMAGES() returns the number of images
launched

YES YES YES YES

THIS IMAGE(), THIS IMAGE(coarray),
THIS IMAGE(coarray, dim)

YES YES YES YES

LCOBOUND(coarray) and
LCOBOUND(coarray,dim)

YES YES YES YES

IMAGE INDEX(coarray, subs) YES YES YES YES

UCOBOUND(COARRAY[, DIM, KIND]) YES YES YES YES

ALLOCATE and DEALLOCATE act as barriers YES YES YES YES

STOP and LOCK construct with
STAT=STAT LOCKED specifier

YES YES comp fails Exec fails

STOP and LOCK construct with
STAT=STAT LOCKED OTHER IMAGE speci-
fier

Exec
times out

Exec
times out

comp fails Exec
times out

STOP and LOCK construct with
STAT=STAT UNLOCKED specifier

YES Exec
times out

comp fails Exec fails

subobjects if a coarray is also a coarray YES YES YES YES

association of pointer components of coarrays
with local objects

YES Exec
times out

YES YES

Table 5. Results of Cross-Checked Feature tests

DESCRIPTION OpenUH Intel G95 Cray

Atomic subroutines YES Fails compila-
tion

Fails compila-
tion

YES

CRITICAL - END CRITICAL sections YES YES YES Exec fails

LOCK & UNLOCK without STAT speci-
fier

YES Fails compila-
tion

Fails compila-
tion

YES

SYNC ALL without STAT specifier YES YES YES YES

SYNC IMAGES(arr) paired with SYNC
IMAGES(*)

YES Exec fails YES YES

call to SYNC IMAGES(arr), should not
behave like SYNC ALL

YES Exec fails YES YES

Table 6. Results of Status tests

DESCRIPTION OpenUH Intel G95 Cray

STOP and SYNC ALL with
STAT=STAT STOPPED IMAGE speci-
fier

YES Exec fails Exec fails Exec fails

STOP and SYNC IMAGES(arr) with
STAT=STAT STOPPED IMAGE speci-
fier

YES YES Exec fails YES

STOP and SYNC IMAGES(*) with
STAT=STAT STOPPED IMAGE speci-
fier

YES Exec fails Exec fails YES

References

1. ISO: ”international standard ISO/IEC 1539-1:2010 (E) - Draft (for Ballot)”, Third
edition (June)

2. Numrich, R.W., Reid, J.: Co-arrays in the next fortran standard. SIGPLAN Fortran
Forum 24(2), 4–17 (August 2005), http://doi.acm.org/10.1145/1080399.1080400

http://doi.acm.org/10.1145/1080399.1080400

	CAF Validation Test Suite Validation Results

