
E. Normaliz interactive: PyNormaliz

PyNormaliz serves three purposes:

• It is the bridge from Normaliz to SageMath.
• It provides an interactive access to Normaliz from a Python command line.
• It is a flexible environment for the exploration of Normaliz.

In the following we describe the use of PyNormaliz from a Python command line and document the
basic functions that allow the access from SageMath.

For a brief introduction please consult the PyNormaliz tutorial at https://nbviewer.jupyter.org/
github/Normaliz/PyNormaliz/blob/main/doc/PyNormaliz_Tutorial.ipynb.

You can also open the tutorial for PyNormaliz interactively on https://mybinder.org following the
link https://mybinder.org/v2/gh/Normaliz/NormalizJupyter/master.

E.1. Installation

The PyNormaliz install script assumes that you have executed the

install_normaliz_with_eantic.sh

script. (It is however possible to install PyNormaliz with fewer optional packages.) In the following
we assume that PyNormaliz resides in the subdirectory PyNormaliz of the Normaliz directory. This
automatically the case if you have downloaded a Normaliz source package. If you have obtained
Normaliz or PyNormaliz in another way, make sure that our assumption is satisfied.

To install PyNormaliz navigate to the Normaliz directory and type

./install_pynormaliz.sh --user

The script detects your Python3 version, assuming the executable is in the PATH. Note that the installa-
tion stores the produced files in ~/.local.

If you want to install PyNormaliz system wide, replace --user by --sudo. Then you will be asked for
your root password. The following additional options are available for install_pynormaliz.sh:

• --python3 <path>: Path to a python3 executable.
• --prefix <path>: Path to the Normaliz install path

Depending on your setup, you might be able to install PyNormaliz via pip, typing

pip3 install PyNormaliz

at a command prompt.

The installation requires the setuptools. If you are missing them install them with pip3.

E.2. The high level interface by examples

PyNormaliz has a high level interface which allows a very intuitive use. We load PyNormaliz:

249

winfried@ryzen:... python3

Python 3.6.9 (default, Oct 8 2020, 12:12:24)

[GCC 8.4.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import PyNormaliz

>>> from PyNormaliz import *

E.2.1. Creating a cone

The only available class in PyNormaliz is Cone. As often in this manual, “cone” includes a lattice of
reference, unless we are working in an algebraic number field. We come back to this case below. First
we have to create a cone (and a lattice). We can use all input types that are allowed in Normaliz input
files. They must be given as named parameters as in the following example:

>>> C = Cone(cone = [[1,3],[2,1]])

This is the example from Section 2.3. There can be several input matrices. The example shows us
how Normaliz matrices are represented as Python types: each row is a list, and the matrix then is a
list whose members are the lists representing the rows. Important: This encoding matches exactly the
formatted matrices in Normaliz input files.

It is possible to use (decimal) fractions in the input, but they must be encoded as strings. Our cone from
above could be defined by

>>> C = Cone(cone = [[1,"3.0"],[1,"1/2"]])

This creates a Cone<mpz_class> on the Normaliz side. One can also create a Cone<long long> by

>>> C = Cone(cone = [[1,"3.0"],[1,"1/2"]], CreateAsLongLong = True)

In the following Cone (with a capital C) is a class defined in PyNormaliz.py. An instance of this class
contains an NmzCone which is the Python equivalent of a Cone<Integer> defined on the Normaliz side.
The NmzCone in the Cone C, is referred to by C.cone. This is only important when one wants to access
the low level interface.

One can create a cone from a Normaliz input file as follows:

C = Cone(file = "example/small")

It will read the file small.in in the directory example /relative to the current directory. CreateAsLongLong
= True can be used.

For polynomial constraints one uses commands like

PolyEq = ["x[1] -x[2]^2", "x[2]*x[3] - 27"]

C.SetPolynomialEquations(PolyEQ)

The argument of SetPolynomialEquations is a list of strings in which each component represents
a polynomial expression. See Sections 4.1.8 and 4.9. The equations are always of type f (x) = 0.
Similarly, inequalities defined by

250

C.SetPolynomialInequalities(PolyEQ)

are vinterpreted as f (x)≥ 0.

Selected input types:

• Homogeneous generators: polytope, subspace, cone, cone_and_lattice, lattice monoid

• Inhomogeneous generators: vertices

• Homogeneous constraints: inequalities, signs, equations, congruences

• Inhomogeneous constraints: inhom_equations, inhom_inequalities, inhom_congruences

• Linear forms: grading, dehomogenization

• Lattice ideals and friends: lattice_ideal, toric_ideal, normal_toric_ideal

For explanantions and other input types se the Normaliz manual. The input type constraints can’t be
used in PyNormaliz. Also shortcuts like nonnegative or total_degree are not available.

E.2.2. Matrices, vectors and numbers

The matrix format of the input is of course also used in PyNormaliz results:

>>> C.HilbertBasis()

[[1, 1], [1, 2], [1, 3], [2, 1]]

PyNormaliz contains some functions that help reading complicated output. For matrices we can use

>>> print_matrix(C.HilbertBasis())

1 1

1 2

1 3

2 1

Similarly

>>> print_matrix(C.SupportHyperplanes())

-1 2

3 -1

Since our input defines an original monoid, we can ask for the module generators over it:

>>> print_matrix(C.ModuleGeneratorsOverOriginalMonoid())

0 0

1 1

1 2

2 2

2 3

Binomials are retrieved in the same way:

>>> print_matrix(C.MarkovBasis())

-1 2 -1 0

-3 1 0 1

251

-2 -1 1 1

In this connection note that you can set upper and lower bounds for the degrees in the output of Markov
and Gröbner bases:

C.SetGBDegreeBound(3)

C.SetGBMinDegree(2)

If you want to set a monomial order for the Gröbner basis, you must use the Compute function:

C.Compute("GroebnerBasis", "Lex")

C.GroebnerBasis()

Some numerical invariants:

>>> C.Rank()

2

>>> C.EmbeddingDim()

2

>>> C.ExternalIndex()

1

>>> C.InternalIndex()

5

If we want to know whether a certain cone property has already been computed, we can ask for it:

>>> C.IsComputed("HilbertBasis")

True

The essential point is that this query does not force the computation if the property has not yet been
computed. There are several more computation goals that come as matrices, vectors or numbers. We
list all of them:

• Matrices: ExtremeRays, VerticesOfPolyhedron, SupportHyperplanes, HilbertBasis,

ModuleGenerators, Deg1Elements, LatticePoints, ModuleGeneratorsOverOriginalMonoid,

ExcludedFaces, OriginalMonoidGenerators, MaximalSubspace, Equations, Congruences,

GroebnerBasis, Representations, FusionRings, SimpleFusionRings, NonSimpleFusionRings

• Matrices with floating point entries: ExtremeRaysFloat, SuppHypsFloat, VerticesFloat

• Vectors: Grading, Dehomogenization, WitnessNotIntegrallyClosed, GeneratorOfInterior,

CoveringFace, AxesScaling, SingleLatticePoint, SingleFusionRing

• Numbers: TriangulationSize, NumberLatticePoints, RecessionRank, AffineDim, ModuleRank,

Rank, EmbeddingDim, ExternalIndex, TriangulationDetSum, GradingDenom, UnitGroupIndex,

InternalIndex,

The numbers have several different representations on the Normaliz side. In Python they are all (long)
integers.

E.2.3. Triangulations, automorphisms and face lattice

Some of the raw output is complicated:

252

>>> U = C.UnimodularTriangulation()

>>> U

[[[[1, 2], 1, []], [[2, 3], 1, []], [[0, 3], 1, []]], [[1, 3], [2, 1], [1, 1], [1, 2]]]

Taking a close look, we see two members of the outermost list. The second is an ordinary matrix,
namely the matrix of the rays of the triangulation:

>>> print_matrix(U[1])

1 3

2 1

1 1

1 2

The first member is not a matrix, but close enough so that we can use print_matrix:

>>> print_matrix(U[0])

[1, 2] 1 []

[2, 3] 1 []

[0, 3] 1 []

In each line we find the information on a simplicial cone, first the list of the rays by their indices relative
to the matrix of rays (counting rows from 0). The next is the determinant relative to a lattice basis (in
our case the unit vectors). In a unimodular triangulation these determinants must of course be 1. The
third component is the list of excluded faces if we have computed a disjoint decomposition. This is
explained in Section 7.14.2.

To see an even more complicated data structure we ask for the combinatorial automorphisms:

>>> G = C.CombinatorialAutomorphisms()

>>> G

[2, Faase, False, [[[1, 0]], [[0, 1]]], [[], []], [[[1, 0]], [[0, 1]]]]

There are 6 components on the outermost level. The first is the order of the group. The second amswers
the question whether the integrality of the automorphisms has been checked. The answer is always “no”
for compinatorial automorphisms, and therefore the third give the answer “no” to the question whether
the automorphisms are integral.

The next three contain information on the

• extreme rays of the (recession) cone,
• the vertices of the polyhedron,
• he support hyperplane

in this order. In each of them we find

• the action of the group generators on the respective vectors,
• their orbits under the group.

In our case there are no vertices of the polyhedron (only defined for inhomogeneous input). This
explains the empty list. Fortunately we can print the complicated result nicely with an explanation:

>>> print_automs(G)

order 2

253

permutations of extreme rays of (recession) cone

0 : [1, 0]

orbits of extreme rays of (recession) cone

0 : [0, 1]

permutations of support hyperplanes

0 : [1, 0]

orbits of support hyperplanes

0 : [0, 1]

It makes sense to have a look at Section 7.22. (Here we count from 0.)

AmbientAutomorphisms and InputAutomorphisms yield a slightly different result. The permutations
and orbits in the third element of the outer list now refer to the input vectors. The fourth element gives
data for thempty set, as does the fifth for InputAutomorphisms . For AmbientAutomorphisms it lists
the permutation and oprbits of the coordinates of the ambient lattice. All this is folloowed by the input
vectors for reference. A simple example:

>>> C = Cone(cone = [[0,1],[1,0]])

>>> C.AmbientAutomorphisms()

[2, True, True, [[[1, 0]], [[0, 1]]], [[], []], [[[1, 0]], [[0, 1]]], [[0, 1], [1, 0]]]

>>> print_automs(C.AmbientAutomorphisms())

order 2

automorphisms are integral

permutations of input vectors

0 : [1, 0]

orbits of input vectors

0 : [0, 1]

permutations of coordinates

0 : [1, 0]

orbits of coordinates

0 : [0, 1]

input vectors

0 1

1 0

Of course, we also want to know the face lattice:

>>> C.FaceLattice()

[[[0, 0], 0], [[1, 0], 1], [[0, 1], 1], [[1, 1], 2]]

Hard to read. Much better:

>>> print_matrix(C.FaceLattice())

[0, 0] 0

[1, 0] 1

[0, 1] 1

[1, 1] 2

So there are four faces. The list contains the support hyperplanes that meet in the face and the number
is the codimension. The support hyperplanes are given by their row indices relative to the matrix of

254

support hyperplanes. Also see Section 7.17. The f -vector:

>>> C.FVector()

[1, 2, 1]

If you want to limit the codimension of the faces computed with FaceLattice or FVector, set the
bound by

>>> C.SetFaceCodimBound(1)

Try it and ask for FaceLattice once more. If you want to get rid of a previously set bound:

>>> SetFaceCodimBound()

or take −1 as the argument.

We also have a printer for the Stanley decomposition:

>>> print_Stanley_dec(C.StanleyDec())

Try it.

The cone properties that fall into the categories discussed in this section are: Triangulation,

UnimodularTriangulation, LatticePointTriangulation, AllGeneratorsTriangulation,

PlacingTriangulation, PullingTriangulation, StanleyDec, InclusionExclusionData, Automorphisms,

CombinatorialAutomorphisms, RationalAutomorphisms, EuclideanAutomorphisms, AmbientAutomorphisms,

InputAutomorphisms, FaceLattice, DualFaceLattice, FVector, DualFVector, Incidence, DualIncidence.

E.2.4. Hilbert and other series

Now we turn to the Hilbert series.

>>> C.HilbertSeries()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "/home/winfried/../PyNormaliz.py", line 403, in inner

return self._generic_getter(name, **kwargs)

File "/home/winfried/.../PyNormaliz.py", line 393, in _generic_getter

PyNormaliz_cpp.NmzCompute(self.cone, input_list)

PyNormaliz_cpp.NormalizError: Could not compute:

No grading specified and cannot find one. Cannot compute some requested properties!

Indeed, we forgot the grading. We could have added it at the time of construction

>>> C = Cone(cone = [[1,3],[2,1]], grading = [[1,2]])

where it must be given as a matrix with a single row. Or we can add it later:

>>> C.SetGrading([1,2])

(A similar function is SetProjectionCoords.) We check the grading:

>>> C.Grading()

255

[[1, 2], 1]

The number 1 following the vector is the grading denominator.

Now:

>>> C.HilbertSeries()

[[1, -1, 0, 1, 0, 0, 0, 1, 0, -1, ..., 0, 0, 0, 0, 1, -1, 1], [1, 28], 0]

For space reasons we have omitted some components in the first list, the numerator of the Hilbert
series. The second gives the denominator, and the last is the shift. Much nicer:

>>> print_series(C.HilbertSeries())

(1 - t + t^3 + t^7 - t^9 + t^10 + t^12 - t^13 + t^14 + t^19 + t^24 - t^25 + t^26)

(1 - t) (1 - t^28)

Options can be added as named parameters:

>>> print_series(C.HilbertSeries(HSOP = True))

(1 + t^3 + t^5 + t^6 + t^8)

(1 - t^4) (1 - t^7)

This representation is much more natural in this case. Perhaps we want so see the Hilbert quasipolyno-
mial:

>>> print_quasipol(C.HilbertQuasiPolynomial())

28 5

-5 5

...

10 5

5 5

divide all coefficients by 28

In this case it seems better to print the polynomials as vectors of coefficients.

If the quasipolynomial has a large period and high degree, you may want to restrict the information to
only a few coefficients from the top:

SetNrCoeffQuasiPol(bound)

The bound −1 or SetNrCoeffQuasiPol()mean “all”, in case you want to get rid of the previously set
bound.

Normaliz can compute the values of the coefficients of the Hilbert series for you:

>>> C.HilbertSeriesExpansion(10)

[1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 2]

For the weighted Ehrhart series we need a polynomial. Let’s add it (can also be done in the constructor
with polynomial = <string>):

>>> C.SetPolynomial("x[1]+x[2]")

256

True

Then

print_series(C.WeightedEhrhartSeries())

We don’t show the result because it is too long for this manual.

The cone properties of this section: HilbertSeries, HilbertQuasiPolynomial, EhrhartSeries,

EhrhartQuasiPolynomial, WeightedEhrhartSeries, WeightedEhrhartQuasiPolynomial

E.2.5. Multiplicity, volume and integral

The first time we see a fraction printed as such:

>>> C.Multiplicity()

’5/28’

Since Python has no built-in type for fractions, we print it as a string.

>>> C.EuclideanVolume()

’0.3993’

The decimal fractions is rounded to 4 decimals. If you need more precision, you can directly use the
low level interface:

>>> NmzResult(C.cone,"EuclideanVolume")

0.39929785312496247

By default, the low level interface returns raw values. We use it once more:

>>> NmzResult(C.cone,"EuclideanIntegral")

0.2638217958147073

We have integrated our polynomial from above. In case we have forgotten it:

>>> C.Polynomial()

’x[1]+x[2]’

For computations with fixed precision one can specify the number of decimal digits:

>>> C.setDecimalDigits(50)

This function is hardly necessary, since the default value of 100 is almost always satisfactory.

The cone properties of this section: Multiplicity, Volume, Integral, VirtualMultiplicity,

EuclideanVolume, EuclideanIntegral, ReesPrimaryMultiplicity

E.2.6. Integer hull and other cones as values

Let us define a nonintegral polytope (we vary the format of the numbers on purpose):

257

>>> R = Cone(vertices = [["-3/2", ’7/5’,1], [9,-15,4], ["7.0",8,3]])

>>> R.VerticesOfPolyhedron()

[[-15, 14, 10], [7, 8, 3], [9, -15, 4]]

The last component of each vector acts as the denominator of the first two, and we recognize the
fractions in the input. Numerical invariants available with inhomogeneous input:

>>> R.AffineDim()

2

>>> R.RecessionRank()

0

>>> R.LatticePoints()

[[-1, 1, 1], [0, 0, 1], [0, 1, 1], [1, -2, 1], ... [2, -1, 1], [2, 0, 1], [2, 1, 1], [2, 2, 1]]

>>> H = R.IntegerHull()

>>> H

<Normaliz Cone>

So we have computed a new cone, the cone over the polytope (in this case) spanned by the lattice points
in the polytope with rational vertices [[-15, 14, 10], [7, 8, 3], [9, -15, 4]].

>>> H.VerticesOfPolyhedron()

[[-1, 1, 1], [1, -2, 1], [1, 2, 1], [2, -3, 1], [2, 2, 1]]

The last component is 1 as it must be for lattice points of the polytope.

>>> print_matrix(H.SupportHyperplanes())

-1 0 2

0 -1 2

1 -2 3

1 1 1

3 2 1

The other computations that return a cone are ProjectCone and SymmetrizedCone.

E.2.7. Boolean values

We ask our cone C many questions:

>>> C.IsGorenstein()

False

>>> C.IsDeg1HilbertBasis()

False

>>> C.IsDeg1ExtremeRays()

False

>>> C.IsPointed()

True

>>> C.IsInhomogeneous()

False

258

>>> C.IsEmptySemiOpen()

...

PyNormaliz_cpp.NormalizError: ...: IsEmptySemiOpen can only be computed with excluded faces

>>> C.IsIntegrallyClosed()

False

>>>

>>> C.IsReesPrimary()

...

PyNormaliz_cpp.NormalizError: Could not compute: IsReesPrimary !

E.2.8. Algebraic polyhedra

For an algebraic polyhedron we must define the real embedded number field over which the polyhedron
is living. This information is given in the cone constructor:

>>> A = Cone(number_field=["a^2-2", "a", "1.4+/-0.1"],

vertices = [["1/2a", "13/3",1], ["-3a^1",-6,2], [-6, "-1/2a-7",1]])

>>> print_matrix(A.VerticesOfPolyhedron())

-6 -1/2*a-7 1

-3/2*a -3 1

1/2*a 13/3 1

>>> print_matrix(A.VerticesFloat())

-6.0000 -7.7071 1.0000

-2.1213 -3.0000 1.0000

0.7071 4.3333 1.0000

>>> A.RenfVolume()

’-19*a+42’

>>> A.EuclideanVolume()

’7.5650’

>>> print_matrix(A.LatticePoints())

-5 -6 1

...

-1 1 1

0 3 1

>>> A.NumberFieldData()

(’a^2 - 2’, ’[1.414213562373095048801...8073176679738 +/- 3.57e-64]’)

>>> A.GetFieldGeneratorName()

’a’

The only point to notice is RenfVolume that we must use instead of Volume here. The number field data
show you to what precision

√
2 had to be computed to make all decisions about positivity for our little

polytope.

E.2.9. Fusion rings

The definition of fusion rings (see Appendix H) follows the usual rules. Example:

259

>>> C = Cone(fusion_type = [[1,1,2,2]], fusion_duality = [[0,1,2,3]])

>>> C.FusionRings()

[[0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1]]

As in ordinary input files, the duality can be omitted if it is the identity. As usual the type and the
duality which are really vectors, must be disguised as matrices with a single row.

For this simple input there is only one fusion ring. It is of course also returned by

>>> C.SingleFusionRing()

[0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1]

as a vector.

Wec can also ask for SimpleFusionRings, NonSimpleFusionRings, LatticePoints, SingleLatticePoint,
InductionMatrices and FusionData. For our example we get the fusion data (line breaks inserted)

[[[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]],

[[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]],

[[0, 0, 1, 0], [0, 0, 1, 0], [1, 1, 0, 1], [0, 0, 1, 1]],

[[0, 0, 0, 1], [0, 0, 0, 1], [0, 0, 1, 1], [1, 1, 1, 0]]]]

For suitable input it make sense to ask for ModularGradings. Then the algorithmic variant UseModularGrading
can be applied via the collective compute command discussed below. If there is more than one modular
grading, you must pick one by the function SetModularGrading(<g>) where <g> is the number of the
grading you want to pick, counted from 1. The same applies to SSetChosenFusionRing(<r>) by which
we can pick a fusion ring for InductionMatrices.

E.2.10. The collective compute command and algorithmic variants

So far we have asked Normaliz for a single cone property. It is also possible to bundle several compu-
tation goals and options in a single compute command:

>>> C.Compute("HilbertBasis", "HilbertSeries", "ClassGroup", "DualMode")

True

>>> C.IsComputed("ClassGroup")

True

>>> C.ClassGroup()

[0, 5]

which means that the class group is isomorphic to Z/(5). The first number 0 indicates that the class
group has rank 0.

The collective compute command not only allows you to set several computation goals simultaneously.
It allows you to specify algorithmic variants, like DulaMode. There is a whole collection of variants
explained elsewhere in this manual:

DefaultMode, Approximate, BottomDecomposition, NoBottomDec, DualMode, PrimalMode,

Projection, ProjectionFloat, NoProjection, Symmetrize, NoSymmetrization, NoSubdivision,

NoNestedTri, KeepOrder, HSOP, NoPeriodBound, NoLLL, NoRelax, Descent, NoDescent,

260

NoGradingDenom, GradingIsPositive, ExploitAutomsVectors (not yet implemented),

ExploitIsosMult, StrictIsoTypeCheck, SignedDec, NoSignedDec, FixedPrecision

E.2.11. Miscellaneous functions

In order to get some information about what is going on in Normaliz, we can switch on the terminal
output:

>>> C = Cone(cone = [[1,3],[2,1]], grading = [[1,2]])

>>> C.SetVerbose()

False

>>> C.HilbertBasis(DualMode = True)

Computing support hyperplanes for the dual mode:

**
starting full cone computation

Generators sorted lexicographically

Starting primal algorithm (only support hyperplanes) ...

Start simplex 1 2

Pointed since graded

Select extreme rays via comparison ... done.

--

transforming data... done.

**
computing Hilbert basis ...

==

cut with halfspace 1 ...

Final sizes: Pos 1 Neg 1 Neutral 0

==

cut with halfspace 2 ...

Final sizes: Pos 3 Neg 3 Neutral 1

Hilbert basis 4

Find degree 1 elements

transforming data... done.

[[1, 1], [2, 1], [1, 2], [1, 3]]

The return value of SetVerbose is the old value of verbose. We had to redefine C to get of the already
computed Hilbert basis. The very last line is our Hilbert basis.

If we want to see all data computed for C, call

>>> C.print_properties()

ExtremeRays: NumberLatticePoints:

[[2, 1], [1, 3]] 0

SupportHyperplanes: Rank:

[[-1, 2], [3, -1]] 2

HilbertBasis: EmbeddingDim:

[[1, 1], [2, 1], [1, 2], [1, 3]] 2

Deg1Elements: IsPointed:

261

[] True

OriginalMonoidGenerators: IsDeg1ExtremeRays:

[[1, 3], [2, 1]] False

MaximalSubspace: IsDeg1HilbertBasis:

[] False

Grading: IsIntegrallyClosed:

[[1, 2], 1] False

GradingDenom: IsInhomogeneous:

1 False

UnitGroupIndex: Sublattice:

1 [[[1, 0], [0, 1]], [[1, 0], [0, 1]], 1]

InternalIndex:

Typeset in two columns. The last property we see is Sublattice. It consists of two matrices and a
number. See Section D.8.16 for the interpretation.

Finally, we can write a Normaliz output file:

>>> C.WriteOutputFile("Wonderful")

True

Now you should find a file Wonderful.out in the current directory.

One can also write a file for the input of precomputed data:

>>> C.WritePrecompData("Wonderful")

True

It creates the file Wonderful.precomp.in.

E.3. The low level interface

The low level interface is contained in NormalizModule.cpp. Its functions are listed in
PyNormaliz_cppMethods[]. They allow the construction of an NmzCone (accompanied by a lattice),
the computation in it, and give access to the computation results. The use of the low level interface is
indirectly explained by the examples above. Therefore we keep the discussion short.

E.3.1. The main functions

For the construction one uses

NmzCone(**kwargs)

The keyword arguments kwargs transport Normaliz input types and the corresponding matrices in
Python format. In addition we must use number_field for algebraic polyhedra. You can use polynomial
for computations with a polynomial weight. (There is also an extra function for setting the polynomial;
see below.) You can also ask for a Cone<long long> by adding CreateAsLongLong = True.

Once and for all: in the functions listed in the following that apply to a specific NmzCone, this NmzCone
must be the first argument in *args.

262

Computations are started by

NmzCompute(*args)

The arguments list the computation goals and options as strings.

Access to the computation results is given by

NmzResult(*args, **kwargs)

There must be exactly two positional arguments. The first is the NmzCone, the second names the result
to be returned, given as a string.

The *kwargs specify handlers, routines that format the raw results of output types that are not existent
in Python or should be formatted for another reason. The potential handlers:

RatHandler defines the formatting of fractions.
FloatHandler defines the formatting of floating point numbers.
NumberfieldElementHandler defines the formatting of number field elements.
VectorHandler defines the formatting of vectors.
MatrixHandler defines the formatting of matrices.

The default handler for vectors and matrices is list, and there is not be much point in changing it. If
you don’t like lists, you can set VectorHandler=tuple, for example. But especially RatHandler and
NumberfieldElementHandler are very useful since the raw versions are difficult to read. Examples of
handlers can be found in PyNormaliz.py.

Note: When NmzResult is called, its first action is to reset the handlers to the raw format. Then the
kwargs are evaluated. In other words: the values of the handlers are only applied to the current result,
and not to future ones.

In the same way as the data access functions of Normaliz, NmzResult triggers the computation of the
required result if it should not have been computed yet. Whether a result has been computed yet can be
checked by

NmzIsComputed(*args)

The second argument of exactly 2 is the result whose computation is to be checked, given as a string.

E.3.2. Additional input and modification of existing cones

These functions allow the input of data that cannot be passed through the cone constructor or modify a
cone after construction. For example:

NmzSetGrading(cone, grading)

The grading is a vector encoded as a Python list. Similarly

NmzSetProjectionCoords(cone, coordinates)

where coordinates is a list with entries 0 or 1.

NmzSetPolynomial(cone, polynomial)

The polynomial is given as a string.

263

NmzSetNrCoeffQuasiPol(cone, number)

NmzSetFaceCodimBound(cone, number)

Do what the names say.

NmzModifyCone(cone, type, matrix)

This is the PyNormaliz version of the libnormaliz function modifyCone. Please have a look at Sec-
tion D.6.

E.3.3. Additional data access

Some values cannot be returned as cone properties. For them we have additional access functions.

NmzGetPolynomial(cone)

returns the polynomial weight if one has been set.

The functions

NmzHilbertSeriesExpansion(cone, degree)

NmzEhrhartSeriesExpansion(cone, degree)

NmzWeightedEhrhartSeriesExpansion(cone, degree)

return the expansion of the named series up to the given degree as a list of numbers.

NmzIntegerHullCone(cone)

NmzProjectCone(cone)

NmzSymmetrizedCone(cone)

return NmzCone.

NmzGetRenfInfo(cone)

NmzFieldGenName(cone)

return the data defining the number field.

E.3.4. Miscellaneous functions

NmzSetVerbose(cone, value=True)

NmzSetVerboseDefault(value=True)

The first sets verbose to the specified value for cone, whereas the second sets it for all subsequently
defined cones.

NmzConeCopy(cone)

returns a copy of cone.

264

NmzSetNumberOfNormalizThreads(number)

does what its name says. The previous number of threads is returned.

NmzWriteOutputFile(cone, project)

NmzWritePrecompData(cone, project)

The first writes a Normaliz output file whose name is the string project with the suffix .out, the second
a file whose name is the string project with suffix precomp.in.

The functions

NmzHasEantic(cone)

NmzHasCoCoA(cone)

NmzHasFlint(cone)

NmzHasFlint(cone)

return True or False, depending on whether Normaliz has been built with the corresponding package.

NmzListConeProperties()

lists all cone properties in case you should have forgotten any of them.

error_out(PyObject* m)

writes an error message if something bad has happened.

E.3.5. Raw formats of numbers

All Normaliz integers are transformed to Python long integers, and floating point numbers are trans-
formed to Python floats.

Numbers of type mpq_class are represented by a list with two components on the Python side, namely
the numerator and the denominator.

An algebraic number is represented by a list whose members are rational numbers each of which is a
list with two members. They are the coefficients of the polynomial representing the algebraic number.

265

