Asymptote: the Vector Graphics
Language

For version 2.89

symptote

This file documents Asymptote, version 2.89.
https://asymptote.sourceforge.io
Copyright (©) 2004-24 Andy Hammerlindl, John Bowman, and Tom Prince.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Lesser General Public License (see the file LICENSE in
the top-level source directory).

https://asymptote.sourceforge.io

Table of Contents

1 Description............. 1
2 Installation.............., 3
2.1 UNIX binary distributions............. ..o i, 3
2.2 MacOS X binary distributions................ ... 3
2.3 Microsoft Windowsc.ouiiiin i 3
2.4 Configuringot 4
2.5 Search paths 6
2.6 Compiling from UNIX source...........cooviiiiiiiiiinnia... 6
2.7 Editing modes. ... 7
2.8 Gl ettt 8
2.9 Uninstallo 8

3 Tutorial 9
3.1 Drawing in batch mode.......... i 9
3.2 Drawing in interactive mode........... ... o il 9
3.3 Figure Sizeot 10
3.4 Labels .o 11
3.5 Paths ... 11

4 Drawing commands............................. 14
AL draW .ot 14
0 16
0 B 1) o X 18
4.4 label .. 18

5 Bezier curves............... i 22
6 Programming...................... 24
6.1 Data types. ..o 24
6.2 Pathsand guides........ ..o 31
6.3 Pens e 38
6.4 Transforms......... ..o 46
6.5 Frames and pictures........ ... 47
6.6 Files ... 53
6.7 Variable initializers.......... ... 56
6.8 SEIUCLUTES. .ottt e 57
6.9 Operators.o e 61
6.9.1 Arithmetic & logical operators...................... 61

6.9.2 Self & prefix operators.......... ..o 62

6.9.3 User-defined operators............cooiiiiiiiiiiii ... 63

6.10 Implicit scaling. ..o 63
6.11 Functionscooiiiii i e 64

6.11.1 Default arguments. ..., 66

6.11.2 Named arguments..............oovuiiiiiniiieennieeann. 66

6.11.3 Rest arguments........ ... i 67

6.11.4 Mathematical functions................ i, 69
B.12 ALY . oottt 70

6.12.1 SHCES. . ettt 77
6.13 Casts « ot 78
6.14 Tmportot 80

6.14.1 Templated iIMpPortsccooviiiiiiiiiiiiiiii .. 82
6.15 Static.ottt e 83
LaTeX usage.t 86
Base modules ... 91
8.1 pladm. ... 91
8.2 SImMPleX ... 91
8.3 math . e 91
8.4 interpolate........ ... 92
8.5 ZEOMELIY ..ottt 92
8.6 trembling............ i 92
BT S S e 92
8.8 PALLEIIS ..ottt 93
8.9 MATKETS ..ttt 93
.10 MaD e 95
G v =Y 95
8.12 binarytree. 95
8.13 Arawbree . oottt 96
Bl Sy ZY gy e et 96
8.15 feynman ... 96
8.16 roundedpath......... ..o i 97
8.17 animationcouiiiiiii i e 97
I8 embed. . ..ottt 97
.19 slideottt 98
8.20 MetaPoSt ..ottt e 98
8.21 babel ... i e 98
8.22 labelpath ...t 98
8.23 labelpath3. 98
8.24 Aannotate ...t 98
82D CAD . e 99
8.26 Graph. ... 99
8.27 palette 129
8. 28 three. . it 134
820 0D it 148

8.30 graphl. ... 148

ii

8.31 GTAdB. .o 153
B.32 SOLAAS . ittt 154
B33 BUDE . ot 155
8.34 £loWChATT .o ottt 156
8.30 COMTOUT ..ttt t ittt e 158
8.36 COMTOUT ...ttt 165
8.37 smoothcontour3ttt e 165
8.38 slopefield........cooiiiiiiiiiii 166
B30 0Q .. e 167
9 Command-line options........................ 168
10 Interactive mode............................. 173
11 Graphical User Interface.................... 175
11.1 GUILinstallation...........ouiiii e iiiiiiiieens 175
11.2 GUI USAZE - . v vt e 175
12 Command-Line Interface.................... 176
13 Language server protocol.................... 177
14 PostScript to Asymptote...................... 178
15 Help... ... 179
16 Debugger 180
17 Acknowledgments............................ 181

iii

1 Description

Asymptote is a powerful descriptive vector graphics language that provides a mathematical
coordinate-based framework for technical drawing. Labels and equations are typeset with
LaTeX, for overall document consistency, yielding the same high-quality level of typesetting
that LaTeX provides for scientific text. By default it produces PostScript output, but it
can also generate OpenGL, PDF, SVG, WebGL, V3D, and PRC vector graphics, along with any
format that the ImageMagick package can produce. You can even try it out in your Web
browser without installing it, using the Asymptote Web Application

http://asymptote.ualberta.ca

It is also possible to send remote commands to this server via the curl utility (see
Chapter 12 [Command-Line Interface], page 176).

A major advantage of Asymptote over other graphics packages is that it is a high-level
programming language, as opposed to just a graphics program: it can therefore exploit the
best features of the script (command-driven) and graphical-user-interface (GUI) methods
for producing figures. The rudimentary GUI xasy included with the package allows one
to move script-generated objects around. To make Asymptote accessible to the average
user, this GUI is currently being developed into a full-fledged interface that can generate
objects directly. However, the script portion of the language is now ready for general use by
users who are willing to learn a few simple Asymptote graphics commands (see Chapter 4
[Drawing commands|, page 14).

Asymptote is mathematically oriented (e.g. one can use complex multiplication to rotate
a vector) and uses LaTeX to do the typesetting of labels. This is an important feature for
scientific applications. It was inspired by an earlier drawing program (with a weaker syntax
and capabilities) called MetaPost.

The Asymptote vector graphics language provides:

e a standard for typesetting mathematical figures, just as TEX/LaTeX is the de-facto
standard for typesetting equations.

e LaTeX typesetting of labels, for overall document consistency;
e the ability to generate and embed 3D vector WebGL graphics within HTML files;
e the ability to generate and embed 3D vector PRC graphics within PDF files;

e a natural coordinate-based framework for technical drawing, inspired by MetaPost,
with a much cleaner, powerful C++-like programming syntax;

e compilation of figures into virtual machine code for speed, without sacrificing portabil-
ity;

e the power of a script-based language coupled to the convenience of a GUI,;

e customization using its own C++-like graphics programming language;

e sensible defaults for graphical features, with the ability to override;

e a high-level mathematically oriented interface to the PostScript language for vector
graphics, including affine transforms and complex variables;

e functions that can create new (anonymous) functions;

e deferred drawing that uses the simplex method to solve overall size constraint issues
between fixed-sized objects (labels and arrowheads) and objects that should scale with
figure size;

http://asymptote.ualberta.ca

Chapter 1: Description 2

Many of the features of Asymptote are written in the Asymptote language itself. While
the stock version of Asymptote is designed for mathematics typesetting needs, one can write
Asymptote modules that tailor it to specific applications; for example, a scientific graphing
module is available (see Section 8.26 [graph], page 99). Examples of Asymptote code and
output, including animations, are available at

https://asymptote.sourceforge.io/gallery/

Clicking on an example file name in this manual, like Pythagoras, will display the PDF
output, whereas clicking on its .asy extension will show the corresponding Asymptote code
in a separate window.

Links to many external resources, including an excellent user-written Asymptote tutorial
can be found at

https://asymptote.sourceforge.io/links.html
A quick reference card for Asymptote is available at

https://asymptote.sourceforge.io/asyRefCard.pdf

https://asymptote.sourceforge.io/gallery/
https://asymptote.sourceforge.io/gallery/Pythagoras.svg
https://asymptote.sourceforge.io/gallery/Pythagoras.asy
https://asymptote.sourceforge.io/links.html
https://asymptote.sourceforge.io/asyRefCard.pdf

2 Installation

After following the instructions for your specific distribution, please see also Section 2.4
[Configuring], page 4.

We recommend subscribing to new release announcements at
https://sourceforge.net/projects/asymptote
Users may also wish to monitor the Asymptote forum:

https://sourceforge.net/p/asymptote/discussion/409349

2.1 UNIX binary distributions

We release both tgz and RPM binary distributions of Asymptote. The root user can install
the Linux x86_64 tgz distribution of version x.xx of Asymptote with the commands:

tar -C / -zxf asymptote-x.xx.x86_64.tgz
texhash

The texhash command, which installs LaTeX style files, is optional. The executable
file will be /usr/local/bin/asy) and example code will be installed by default in
/opt/local/share/doc/asymptote/examples.

Fedora users can easily install a recent version of Asymptote with the command
dnf --enablerepo=rawhide install asymptote

To install the latest version of Asymptote on a Debian-based distribution (e.g. Ubuntu,
Mepis, Linspire) follow the instructions for compiling from UNIX source (see Section 2.6
[Compiling from UNIX source], page 6). Alternatively, Debian users can install one of
Hubert Chan’s prebuilt Asymptote binaries from

http://ftp.debian.org/debian/pool/main/a/asymptote

2.2 MacOS X binary distributions

MacOS X users can either compile the UNIX source code (see Section 2.6 [Compiling from
UNIX source|, page 6) or install the Asymptote binary available at

https://www.macports.org/
or at
https://brew.sh/

Note that many Mac0S X (and FreeBSD) systems lack the GNU readline library. For full
interactive functionality, GNU readline version 4.3 or later must be installed.

2.3 Microsoft Windows

Users of the Microsoft Windows operating system can install the self-extracting Asymptote
executable asymptote-x.xx-setup.exe, where x.xx denotes the latest version.
A working TgX implementation (we recommend https://www.tug.org/texlive or

http://www.miktex.org) will be required to typeset labels. You will also need to install
GPL Ghostscript version 9.56 or later from https://www.ghostscript.com/.

To view PostScript output, you can install the program Sumatra PDF available from
https://www.sumatrapdfreader.org/.

https://sourceforge.net/projects/asymptote
https://sourceforge.net/p/asymptote/discussion/409349
http://ftp.debian.org/debian/pool/main/a/asymptote
https://www.macports.org/
https://brew.sh/
https://www.tug.org/texlive
http://www.miktex.org
https://www.ghostscript.com/
https://www.sumatrapdfreader.org/

Chapter 2: Installation 4

The ImageMagick package from https://www.imagemagick.org/script/
binary-releases.php

is required to support output formats other than HTML, PDF, SVG, and PNG (see [convert],
page 171). The Python 3 interpreter from https://www.python.org is only required if you
wish to try out the graphical user interface (see Chapter 11 [GUI], page 175).

Example code will be installed by default in the examples subdirectory of the installation
directory (by default, C:\Program Files\Asymptote).

2.4 Configuring

In interactive mode, or when given the -V option (the default when running Asymptote on
a single file under MSDOS), Asymptote will automatically invoke your PostScript viewer
(evince under UNIX) to display graphical output. The PostScript viewer should be capable
of automatically redrawing whenever the output file is updated. The UNIX PostScript
viewer gv supports this (via a SIGHUP signal). Users of ggv will need to enable Watch file
under Edit/PostScript Viewer Preferences.

Configuration variables are most easily set as Asymptote variables in an optional con-

figuration file config.asy (see [configuration file], page 171). For example, the setting
pdfviewer specifies the location of the PDF viewer. Here are the default values of several
important configuration variables under UNIX:
import settings;
pdfviewer="acroread";
htmlviewer="google-chrome" ;
psviewer="evince";
display="display";
animate="animate";
gs="gs";
libgs="";
Under MSDOS, the viewer settings htmlviewer, pdfviewer, psviewer, display, and
animate default to the string cmd, requesting the application normally associated with
each file type. The (installation-dependent) default values of gs and 1ibgs are determined
automatically from the Microsoft Windows registry. The gs setting specifies the location
of the PostScript processor Ghostscript, available from https://www.ghostscript.
com/.

The configuration variable htmlviewer specifies the browser to use to display 3D WebGL out-
put. The default setting is google-chrome under UNIX and cmd under Microsoft Windows.
Note that Internet Explorer does not support WebGL; Microsoft Windows users should
set their default html browser to chrome or microsoft-edge. By default, 2D and 3D HTML
images expand to the enclosing canvas; this can be disabled by setting the configuration
variable absolute to true.

On UNIX systems, to support automatic document reloading of PDF files in Adobe Reader,
we recommend copying the file reload. js from the Asymptote system directory (by default,
/opt/local/share/asymptote under UNIX to ~/.adobe/Acrobat/x.x/JavaScripts/,
where x.x represents the appropriate Adobe Reader version number. The automatic
document reload feature must then be explicitly enabled by putting

import settings;

https://www.imagemagick.org/script/binary-releases.php
https://www.imagemagick.org/script/binary-releases.php
https://www.python.org
https://www.ghostscript.com/
https://www.ghostscript.com/

Chapter 2: Installation 5

pdfreload=true;
pdfreloadOptions="-tempFile";

in the Asymptote configuration file. This reload feature is not useful under MSDOS since the
document cannot be updated anyway on that operating system until it is first closed by
Adobe Reader.

The configuration variable dir can be used to adjust the search path (see Section 2.5
[Search paths|, page 6).

By default, Asymptote attempts to center the figure on the page, assuming that the paper
typeis letter. The default paper type may be changed to a4 with the configuration variable
papertype. Alignment to other paper sizes can be obtained by setting the configuration
variables paperwidth and paperheight.

These additional configuration variables normally do not require adjustment:

config
texpath
texcommand
dvips
dvisvgm
convert
asygl

Warnings (such as "unbounded" and "offaxis") may be enabled or disabled with the
functions

warn(string s);
nowarn(string s);

or by directly modifying the string array settings.suppress, which lists all disabled warn-
ings.
Configuration variables may also be set or overwritten with a command-line option:

asy -psviewer=evince -V venn

Alternatively, system environment versions of the above configuration variables may be
set in the conventional way. The corresponding environment variable name is obtained by
converting the configuration variable name to upper case and prepending ASYMPTOTE_: for
example, to set the environment variable

ASYMPTOTE_PAPERTYPE="a4";
under Microsoft Windows XP:

1. Click on the Start button;

2. Right-click on My Computer;

3. Choose View system information;
4. Click the Advanced tab;
5

Click the Environment Variables button.

Chapter 2: Installation 6

2.5 Search paths

In looking for Asymptote files, asy will search the following paths, in the order listed:
1. The current directory;

2. A list of one or more directories specified by the configuration variable dir or environ-
ment variable ASYMPTOTE_DIR (separated by : under UNIX and ; under MSDOS);

3. The directory specified by the environment variable ASYMPTOTE_HOME; if this variable is
not set, the directory .asy in the user’s home directory (%USERPROFILE%\.asy under
MSDOS) is used;

4. The Asymptote system directory (by default, /opt/local/share/asymptote under
UNIX and C:\Program Files\Asymptote under MSDOS).

5. The Asymptote examples directory (by default, /opt/local/share/doc/asymptote/examples
under UNIX and C:\Program Files\Asymptote\examples under MSDOS).

2.6 Compiling from UNIX source

To compile and install a UNIX executable from the source release asymptote-x.xx.src.tgz
in the subdirectory x.xx under

https://sourceforge.net/projects/asymptote/files/
execute the commands:

gunzip asymptote-x.xx.src.tgz
tar -xf asymptote-x.xx.src.tar
cd asymptote-x.xx

By default the system version of the Boehm garbage collector will be used; if it is old we
recommend first putting https://github.com/ivmai/bdwgc/releases/download/v8.0.
4/gc-8.0.4.tar.gzhttps://www.ivmaisoft.com/_bin/atomic_ops/libatomic_ops-7.
6.10.tar.gz in the Asymptote source directory.

On UNIX platforms (other than MacOS X), we recommend using version 3.2.1 of the

freeglut library. To compile freeglut, download
https://prdownloads.sourceforge.net/freeglut/freeglut-3.2.1.tar.
gz

and type (as the root user):

gunzip freeglut-3.2.1.tar.gz

tar -xf freeglut-3.2.1.tar

cd freeglut-3.2.1

cmake -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_C_FLAGS=-fcommon .

make

make install

Then compile Asymptote with the commands
./configure
make all
make install
Be sure to use GNU make (on non-GNU systems this command may be called gmake). To
build the documentation, you may need to install the texinfo-tex package. If you get
errors from a broken texinfo or pdftex installation, simply put

https://sourceforge.net/projects/asymptote/files/
https://github.com/ivmai/bdwgc/releases/download/v8.0.4/gc-8.0.4.tar.gz
https://github.com/ivmai/bdwgc/releases/download/v8.0.4/gc-8.0.4.tar.gz
https://www.ivmaisoft.com/_bin/atomic_ops/libatomic_ops-7.6.10.tar.gz
https://www.ivmaisoft.com/_bin/atomic_ops/libatomic_ops-7.6.10.tar.gz
https://prdownloads.sourceforge.net/freeglut/freeglut-3.2.1.tar.gz
https://prdownloads.sourceforge.net/freeglut/freeglut-3.2.1.tar.gz

Chapter 2: Installation 7

https://asymptote.sourceforge.io/asymptote.pdf
in the directory doc and repeat the command make all.

For a (default) system-wide installation, the last command should be done as the root user.
To install without root privileges, change the ./configure command to

./configure --prefix=$HOME/asymptote

One can disable use of the Boehm garbage collector by configuring with ./configure
--disable-gc. For a list of other configuration options, say ./configure --help. For
example, under MacOS X, one can tell configure to use the clang compilers and look for
header files and libraries in nonstandard locations:

./configure CC=clang CXX=clang++ CPPFLAGS=-I/opt/local/include LDFLAGS=-L/opt/local/lib

If you are compiling Asymptote with gcc, you will need a relatively recent version (e.g.
3.4.4 or later). For full interactive functionality, you will need version 4.3 or later of the GNU
readline library. The file gcc3.3.2curses.patch in the patches directory can be used
to patch the broken curses.h header file (or a local copy thereof in the current directory) on
some AIX and IRIX systems.

The FFTW library is only required if you want Asymptote to be able to take Fourier
transforms of data (say, to compute an audio power spectrum). The GSL library is only
required if you require the special functions that it supports.

If you don’t want to install Asymptote system wide, just make sure the compiled binary
asy and GUI script xasy are in your path and set the configuration variable dir to point
to the directory base (in the top level directory of the Asymptote source code).

2.7 Editing modes

Users of emacs can edit Asymptote code with the mode asy-mode, after enabling it by
putting the following lines in their .emacs initialization file, replacing ASYDIR with the
location of the Asymptote system directory (by default, /opt/local/share/asymptote or
C:\Program Files\Asymptote under MSDOS):

(add-to-1list 'load-path "ASYDIR")

(autoload 'asy-mode "asy-mode.el" "Asymptote major mode." t)

(autoload 'lasy-mode "asy-mode.el" "hybrid Asymptote/Latex major mode." t)
(autoload 'asy-insinuate-latex "asy-mode.el" "Asymptote insinuate LaTeX." t)
(add-to-list 'auto-mode-alist '("\\.asy$" . asy-mode))

Particularly useful key bindings in this mode are C-c C-c, which compiles and displays the
current buffer, and the key binding C-c ?, which shows the available function prototypes
for the command at the cursor. For full functionality you should also install the Apache
Software Foundation package two-mode-mode:

https://www.dedasys.com/freesoftware/files/two-mode-mode.el

Once installed, you can use the hybrid mode lasy-mode to edit a LaTeX file containing
embedded Asymptote code (see Chapter 7 [LaTeX usage|, page 86). This mode can be en-
abled within latex-mode with the key sequence M-x lasy-mode <RET>. On UNIX systems,
additional keywords will be generated from all asy files in the space-separated list of direc-
tories specified by the environment variable ASYMPTOTE_SITEDIR. Further documentation
of asy-mode is available within emacs by pressing the sequence keys C-h f asy-mode <RET>.

https://asymptote.sourceforge.io/asymptote.pdf
https://www.dedasys.com/freesoftware/files/two-mode-mode.el

Chapter 2: Installation 8

Fans of vim can customize vim for Asymptote with
cp /opt/local/share/asymptote/asy.vim ~/.vim/syntax/asy.vim
and add the following to their ~/.vimrc file:

augroup filetypedetect
au BufNewFile,BufRead *.asy setf asy
augroup END
filetype plugin on
If any of these directories or files don’t exist, just create them. To set vim up to run the
current asymptote script using :make just add to ~/.vim/ftplugin/asy.vim:

setlocal makeprg=asy\ %
setlocal errorformat=%f:\ %l.%c:\ %m

Syntax highlighting support for the KDE editor Kate can be enabled by running
asy-kate.sh in the /opt/local/share/asymptote directory and putting the generated
asymptote.xml file in “/.1local/share/org.kde.syntax-highlighting/syntax/.

2.8 Git

The following commands are needed to install the latest development version of Asymptote
using git:

git clone https://github.com/vectorgraphics/asymptote

cd asymptote
./autogen.sh
./configure
make all
make install

To compile without optimization, use the command make CFLAGS=-g. On Ubuntu systems,
you may need to first install the required dependencies:

apt-get build-dep asymptote

2.9 Uninstall

To uninstall a Linux x86_64 binary distribution, use the commands

tar -zxvf asymptote-x.xx.x86_64.tgz | xargs --replace=}% rm /%
texhash

To uninstall all Asymptote files installed from a source distribution, use the command

make uninstall

3 Tutorial

A concise introduction to Asymptote is given here. For a more thorough introduction, see
the excellent Asymptote tutorial written by Charles Staats:

https://asymptote.sourceforge.io/asymptote_tutorial.pdf

Another Asymptote tutorial is available as a wiki, with images rendered by an online
Asymptote engine:
https://www.artofproblemsolving.com/wiki/?title=Asymptote_(Vector_Graphics_Language)

3.1 Drawing in batch mode

To draw a line from coordinate (0,0) to coordinate (100,100), create a text file test.asy
containing

draw((0,0)--(100,100));

Then execute the command

asy -V test

Alternatively, MSDOS users can drag and drop test.asy onto the Desktop asy icon (or make
Asymptote the default application for the extension asy).

This method, known as batch mode, outputs a PostScript file test.eps. If you prefer PDF
output, use the command line

asy -V -f pdf test
In either case, the -V option opens up a viewer window so you can immediately view the
result:

Here, the —- connector joins the two points (0,0) and (100,100) with a line segment.

3.2 Drawing in interactive mode

Another method is interactive mode, where Asymptote reads individual commands as they
are entered by the user. To try this out, enter Asymptote’s interactive mode by clicking on
the Asymptote icon or typing the command asy. Then type

draw((0,0)--(100,100));

followed by Enter, to obtain the above image. At this point you can type further draw
commands, which will be added to the displayed figure, erase to clear the canvas,

input test;

https://asymptote.sourceforge.io/asymptote_tutorial.pdf
https://www.artofproblemsolving.com/wiki/?title=Asymptote_(Vector_Graphics_Language)

Chapter 3: Tutorial 10

to execute all of the commands contained in the file test.asy, or quit to exit interactive
mode. You can use the arrow keys in interactive mode to edit previous lines. The tab key
will automatically complete unambiguous words; otherwise, hitting tab again will show the
possible choices. Further commands specific to interactive mode are described in Chapter 10
[Interactive mode], page 173.

3.3 Figure size

In Asymptote, coordinates like (0,0) and (100,100), called pairs, are expressed in
PostScript "big points" (1 bp = 1/72 inch) and the default line width is 0.5bp. However,
it is often inconvenient to work directly in PostScript coordinates. The next example
produces identical output to the previous example, by scaling the line (0,0)--(1,1) to fit
a rectangle of width 100.5 bp and height 100.5 bp (the extra 0.5bp accounts for the line
width):

size(100.5,100.5);
draw((0,0)--(1,1));

One can also specify the size in pt (1 pt = 1/72.27 inch), cm, mm, or inches. T'wo nonzero
size arguments (or a single size argument) restrict the size in both directions, preserving
the aspect ratio. If 0 is given as a size argument, no restriction is made in that direction;
the overall scaling will be determined by the other direction (see [size]|, page 48):

size(0,100.5);
draw((0,0)--(2,1) ,Arrow);

To connect several points and create a cyclic path, use the cycle keyword:

size(3cm);
draw((0,0)--(1,0)--(1,1)--(0,1)--cycle);

Chapter 3: Tutorial 11

For convenience, the path (0,0)--(1,0)--(1,1)--(0,1)--cycle may be replaced with
the predefined variable unitsquare, or equivalently, box ((0,0),(1,1)).

To make the user coordinates represent multiples of exactly 1cm:

unitsize(lcm);
draw(unitsquare) ;

3.4 Labels

Adding labels is easy in Asymptote; one specifies the label as a double-quoted LaTeX string,
a coordinate, and an optional alignment direction:

size(3cm);
draw(unitsquare) ;
label ("A", (0,0),SW);
label("B", (1,0),SE);
label("C", (1,1),NE);
label("D", (0,1) ,NW);

A B

Asymptote uses the standard compass directions E=(1,0), N=(0,1), NE=unit (N+E), and
ENE=unit (E+NE), etc., which along with the directions up, down, right, and left are
defined as pairs in the Asymptote base module plain (a user who has a local variable
named E may access the compass direction E by prefixing it with the name of the module
where it is defined: plain.E).

3.5 Paths

This example draws a path that approximates a quarter circle, terminated with an arrow-
head:

size(100,0);
draw((1,0){up}..{1left}(0,1),Arrow);

Chapter 3: Tutorial 12

Here the directions up and left in braces specify the outgoing and incoming directions at
the points (1,0) and (0,1), respectively.

In general, a path is specified as a list of points (or other paths) interconnected with —-,
which denotes a straight line segment, or .., which denotes a cubic spline (see Chapter 5
[Bezier curves|, page 22). Specifying a final ..cycle creates a cyclic path that connects
smoothly back to the initial node, as in this approximation (accurate to within 0.06%) of a
unit circle:

path unitcircle=E..N..W..S..cycle;

An Asymptote path, being connected, is equivalent to a PostScript subpath. The =~ bi-
nary operator, which requests that the pen be moved (without drawing or affecting endpoint
curvatures) from the final point of the left-hand path to the initial point of the right-hand
path, may be used to group several Asymptote paths into a path[] array (equivalent to a
PostScript path):

size(0,100);

path unitcircle=E..N..W..S..cycle;

path g=scale(2)*unitcircle;
filldraw(unitcircle”"g,evenodd+yellow,black) ;

The PostScript even-odd fill rule here specifies that only the region bounded between the
two unit circles is filled (see [fillrule], page 42). In this example, the same effect can be
achieved by using the default zero winding number fill rule, if one is careful to alternate the
orientation of the paths:

filldraw(unitcircle” "reverse(g),yellow,black) ;

The =~ operator is used by the box(triple, triple) function in the module three to
construct the edges of a cube unitbox without retracing steps (see Section 8.28 [three],
page 134):

import three;

Chapter 3: Tutorial 13

currentprojection=orthographic(5,4,2,center=true);

size(5cm) ;
size3(3cm,5cm,8cm) ;

draw(unitbox) ;
dot (unitbox,red);

label("0", (0,0,0) ,NW);

label("(1,0,0)",(1,0,0),3);
label("(0,1,0)",(0,1,0),E);
label("(0,0,1)",(0,0,1),Z);

(0,0,1)

| =

(170 (0,1,0)

See section Section 8.26 [graph|, page 99, (or the online Asymptote gallery and exter-
nal links posted at https://asymptote.sourceforge.io) for further examples, including
two-dimensional and interactive three-dimensional scientific graphs. Additional examples
have been posted by Philippe Ivaldi at https://web.archive.org/web/20201130113133/
http://www.piprime.fr/asymptote.

https://asymptote.sourceforge.io/gallery
https://asymptote.sourceforge.io
https://web.archive.org/web/20201130113133/http://www.piprime.fr/asymptote
https://web.archive.org/web/20201130113133/http://www.piprime.fr/asymptote

14

4 Drawing commands

All of Asymptote’s graphical capabilities are based on four primitive commands. The three
PostScript drawing commands draw, £il1l, and clip add objects to a picture in the order
in which they are executed, with the most recently drawn object appearing on top. The
labeling command label can be used to add text labels and external EPS images, which
will appear on top of the PostScript objects (since this is normally what one wants), but
again in the relative order in which they were executed. After drawing objects on a picture,
the picture can be output with the shipout function (see [shipout], page 49).

If you wish to draw PostScript objects on top of labels (or verbatim tex commands;
see [tex], page 53), the layer command may be used to start a new PostScript/LaTeX
layer:

void layer(picture pic=currentpicture);

The layer function gives one full control over the order in which objects are drawn.
Layers are drawn sequentially, with the most recent layer appearing on top. Within each
layer, labels, images, and verbatim tex commands are always drawn after the PostScript
objects in that layer.

A page break can be generated with the command
void newpage(picture pic=currentpicture);

While some of these drawing commands take many options, they all have sensible default
values (for example, the picture argument defaults to currentpicture).

4.1 draw

void draw(picture pic=currentpicture, Label L="", path g,
align align=NoAlign, pen p=currentpen,
arrowbar arrow=None, arrowbar bar=None, margin margin=NoMargin,
Label legend="", marker marker=nomarker) ;

Draw the path g on the picture pic using pen p for drawing, with optional drawing
attributes (Label L, explicit label alignment align, arrows and bars arrow and bar, margins
margin, legend, and markers marker). Only one parameter, the path, is required. For
convenience, the arguments arrow and bar may be specified in either order. The argument
legend is a Label to use in constructing an optional legend entry.

Bars are useful for indicating dimensions. The possible values of bar are None, BeginBar,
EndBar (or equivalently Bar), and Bars (which draws a bar at both ends of the path). Each
of these bar specifiers (except for None) will accept an optional real argument that denotes
the length of the bar in PostScript coordinates. The default bar length is barsize (pen).

The possible values of arrow are None, Blank (which draws no arrows or path),
BeginArrow, MidArrow, EndArrow (or equivalently Arrow), and Arrows (which draws an
arrow at both ends of the path). All of the arrow specifiers except for None and Blank may
be given the optional arguments arrowhead arrowhead (one of the predefined arrowhead
styles DefaultHead, SimpleHead, HookHead, TeXHead), real size (arrowhead size in
PostScript coordinates), real angle (arrowhead angle in degrees), filltype filltype
(one of FillDraw, Fill, NoFill, UnFill, Draw) and (except for MidArrow and Arrows)
a real position (in the sense of point(path p, real t)) along the path where the tip

Chapter 4: Drawing commands 15

of the arrow should be placed. The default arrowhead size when drawn with a pen p is
arrowsize(p). There are also arrow versions with slightly modified default values of size
and angle suitable for curved arrows: BeginArcArrow, EndArcArrow (or equivalently
ArcArrow), MidArcArrow, and ArcArrows.

Margins can be used to shrink the visible portion of a path by labelmargin(p)
to avoid overlap with other drawn objects. Typical values of margin are NoMargin,
BeginMargin, EndMargin (or equivalently Margin), and Margins (which leaves a margin
at both ends of the path). One may use Margin(real begin, real end=begin) to
specify the size of the beginning and ending margin, respectively, in multiples of
the units labelmargin(p) used for aligning labels. Alternatively, BeginPenMargin,
EndPenMargin (or equivalently PenMargin), PenMargins, PenMargin(real begin, real
end=begin) specify a margin in units of the pen line width, taking account of the pen line
width when drawing the path or arrow. For example, use DotMargin, an abbreviation
for PenMargin(-0.5*dotfactor,0.5*dotfactor), to draw from the usual beginning
point just up to the boundary of an end dot of width dotfactor*linewidth(p). The
qualifiers BeginDotMargin, EndDotMargin, and DotMargins work similarly. The qualifier
TrueMargin(real begin, real end=begin) allows one to specify a margin directly in
PostScript units, independent of the pen line width.

The use of arrows, bars, and margins is illustrated by the examples Pythagoras.asy
and sqrtx01.asy.

The legend for a picture pic can be fit and aligned to a frame with the routine:

frame legend(picture pic=currentpicture, int perline=1,
real xmargin=legendmargin, real ymargin=xmargin,
real linelength=legendlinelength,
real hskip=legendhskip, real vskip=legendvskip,
real maxwidth=0, real maxheight=0,
bool hstretch=false, bool vstretch=false, pen p=currentpen);

Here xmargin and ymargin specify the surrounding x and y margins, perline specifies
the number of entries per line (default 1; 0 means choose this number automatically),
linelength specifies the length of the path lines, hskip and vskip specify the line skip
(as a multiple of the legend entry size), maxwidth and maxheight specify optional upper
limits on the width and height of the resulting legend (0 means unlimited), hstretch and
vstretch allow the legend to stretch horizontally or vertically, and p specifies the pen used
to draw the bounding box. The legend frame can then be added and aligned about a point
on a picture dest using add or attach (see [add about], page 51).

To draw a dot, simply draw a path containing a single point. The dot command defined
in the module plain draws a dot having a diameter equal to an explicit pen line width or
the default line width magnified by dotfactor (6 by default), using the specified filltype
(see [filltype], page 50) or dotfilltype (Fill by default):

void dot(frame f, pair z, pen p=currentpen, filltype filltype=dotfilltype);
void dot(picture pic=currentpicture, pair z, pen p=currentpen,
filltype filltype=dotfilltype);
void dot(picture pic=currentpicture, Label L, pair z, align align=NoAlign,
string format=defaultformat, pen p=currentpen, filltype filltype=dotfilltype) ;
void dot(picture pic=currentpicture, Label[] L=new Label[], pair[] z,

https://asymptote.sourceforge.io/gallery/Pythagoras.svg
https://asymptote.sourceforge.io/gallery/Pythagoras.asy
https://asymptote.sourceforge.io/gallery/3Dgraphs/sqrtx01.html
https://asymptote.sourceforge.io/gallery/sqrtx01.asy

Chapter 4: Drawing commands 16

align align=NoAlign, string format=defaultformat, pen p=currentpen,
filltype filltype=dotfilltype);
void dot(picture pic=currentpicture, path[] g, pen p=currentpen,
filltype filltype=dotfilltype);
void dot(picture pic=currentpicture, Label L, pen p=currentpen,
filltype filltype=dotfilltype);

If the variable Label is given as the Label argument to the third routine, the format
argument will be used to format a string based on the dot location (here defaultformat is
"$%.4g$"). The fourth routine draws a dot at every point of a pair array z. One can also
draw a dot at every node of a path:
void dot(picture pic=currentpicture, Label[] L=new Labell[],

explicit path g, align align=RightSide, string format=defaultformat,
pen p=currentpen, filltype filltype=dotfilltype);

See [pathmarkers], page 109, and Section 8.9 [markers|, page 93, for more general meth-
ods for marking path nodes.

To draw a fixed-sized object (in PostScript coordinates) about the user coordinate
origin, use the routine
void draw(pair origin, picture pic=currentpicture, Label L="", path g,

align align=NoAlign, pen p=currentpen, arrowbar arrow=None,
arrowbar bar=None, margin margin=NoMargin, Label legend="",
marker marker=nomarker) ;

4.2 fill

void fill(picture pic=currentpicture, path g, pen p=currentpen);

Fill the interior region bounded by the cyclic path g on the picture pic, using the pen
P

There is also a convenient filldraw command, which fills the path and then draws in
the boundary. One can specify separate pens for each operation:

void filldraw(picture pic=currentpicture, path g, pen fillpen=currentpen,
pen drawpen=currentpen) ;

This fixed-size version of £ill allows one to fill an object described in PostScript
coordinates about the user coordinate origin:

void fill(pair origin, picture pic=currentpicture, path g, pen p=currentpen);
This is just a convenient abbreviation for the commands:
picture opic;
fill(opic,g,p);
add(pic,opic,origin);
The routine
void filloutside(picture pic=currentpicture, path g, pen p=currentpen);
fills the region exterior to the path g, out to the current boundary of picture pic.

Lattice gradient shading varying smoothly over a two-dimensional array of pens p, using
fill rule fillrule, can be produced with

void latticeshade(picture pic=currentpicture, path g, bool stroke=false,

Chapter 4: Drawing commands 17

pen fillrule=currentpen, pen[][] p)

If stroke=true, the region filled is the same as the region that would be drawn by
draw(pic,g,zerowinding); in this case the path g need not be cyclic. The pens in p
must belong to the same color space. One can use the functions rgb(pen) or cmyk(pen) to
promote pens to a higher color space, as illustrated in the example file latticeshading.asy.

Axial gradient shading varying smoothly from pena to penb in the direction of the line
segment a--b can be achieved with

void axialshade(picture pic=currentpicture, path g, bool stroke=false,
pen pena, pair a, bool extenda=true,
pen penb, pair b, bool extendb=true);

The boolean parameters extenda and extendb indicate whether the shading should extend
beyond the axis endpoints a and b. An example of axial shading is provided in the example
file axialshade.asy.

Radial gradient shading varying smoothly from pena on the circle with center a and
radius ra to penb on the circle with center b and radius rb is similar:

void radialshade(picture pic=currentpicture, path g, bool stroke=false,
pen pena, pair a, real ra, bool extenda=true,
pen penb, pair b, real rb, bool extendb=true);

The boolean parameters extenda and extendb indicate whether the shading should extend
beyond the radii a and b. Illustrations of radial shading are provided in the example files
shade.asy, ring.asy, and shadestroke.asy.

Gouraud shading using fill rule fillrule and the vertex colors in the pen array p on a
triangular lattice defined by the vertices z and edge flags edges is implemented with

void gouraudshade(picture pic=currentpicture, path g, bool stroke=false,
pen fillrule=currentpen, penl[] p, pair[] z,
int[] edges);

void gouraudshade(picture pic=currentpicture, path g, bool stroke=false,
pen fillrule=currentpen, pen[] p, int[] edges);

In the second form, the elements of z are taken to be successive nodes of path g. The pens
in p must belong to the same color space. Illustrations of Gouraud shading are provided
in the example file Gouraud.asy. The edge flags used in Gouraud shading are documented
here:

https://www.adobe.com/content/dam/acom/en/devnet/postscript/pdfs/
TN5600.SmoothShading.pdf
Tensor product shading using clipping path g, fill rule fillrule on patches bounded by
the n cyclic paths of length 4 in path array b, using the vertex colors specified in the n x 4
pen array p and internal control points in the n x 4 array z, is implemented with
void tensorshade(picture pic=currentpicture, path[] g, bool stroke=false,
pen fillrule=currentpen, pen[][] p, path[] b=g,
pair[]1[] z=new pair([][]);
If the array z is empty, Coons shading, in which the color control points are calculated
automatically, is used. The pens in p must belong to the same color space. A simpler
interface for the case of a single patch (n = 1) is also available:

void tensorshade(picture pic=currentpicture, path g, bool stroke=false,

https://asymptote.sourceforge.io/gallery/latticeshading.svg
https://asymptote.sourceforge.io/gallery/latticeshading.asy
https://asymptote.sourceforge.io/gallery/axialshade.svg
https://asymptote.sourceforge.io/gallery/axialshade.asy
https://asymptote.sourceforge.io/gallery/shade.svg
https://asymptote.sourceforge.io/gallery/shade.asy
https://asymptote.sourceforge.io/gallery/PDFs/ring.pdf
https://asymptote.sourceforge.io/gallery/PDFs/ring.asy
https://asymptote.sourceforge.io/gallery/PDFs/shadestroke.pdf
https://asymptote.sourceforge.io/gallery/PDFs/shadestroke.asy
https://asymptote.sourceforge.io/gallery/PDFs/Gouraud.pdf
https://asymptote.sourceforge.io/gallery/PDFs/Gouraud.asy
https://www.adobe.com/content/dam/acom/en/devnet/postscript/pdfs/TN5600.SmoothShading.pdf
https://www.adobe.com/content/dam/acom/en/devnet/postscript/pdfs/TN5600.SmoothShading.pdf

Chapter 4: Drawing commands 18

pen fillrule=currentpen, pen[] p, path b=g,
pair[] z=new pair[l);

One can also smoothly shade the regions between consecutive paths of a sequence using
a given array of pens:

void draw(picture pic=currentpicture, pen fillrule=currentpen, path[] g,
penl] p);

Illustrations of tensor product and Coons shading are provided in the example files

tensor.asy, Coons.asy, BezierPatch.asy, and rainbow.asy.

More general shading possibilities are available using TEX engines that produce PDF
output (see [texengines|, page 171): the routine

void functionshade(picture pic=currentpicture, path[] g, bool stroke=false,
pen fillrule=currentpen, string shader);

shades on picture pic the interior of path g according to fill rule fillrule using the
PostScript calculator routine specified by the string shader; this routine takes 2 argu-
ments, each in [0,1], and returns colors(fillrule).length color components. Function
shading is illustrated in the example functionshading.asy.

The following routine uses evenodd clipping together with the =~ operator to unfill a
region:

void unfill(picture pic=currentpicture, path g);

4.3 clip

void clip(picture pic=currentpicture, path g, stroke=false,
pen fillrule=currentpen);

Clip the current contents of picture pic to the region bounded by the path g, using fill
rule fillrule (see [fillrule], page 42). If stroke=true, the clipped portion is the same as
the region that would be drawn with draw(pic,g,zerowinding); in this case the path g
need not be cyclic. While clipping has no notion of depth (it transcends layers and even
pages), one can localize clipping to a temporary picture, which can then be added to pic.
For an illustration of picture clipping, see the first example in Chapter 7 [LaTeX usage],
page 86.

4.4 label

void label(picture pic=currentpicture, Label L, pair position,
align align=NoAlign, pen p=currentpen, filltype filltype=NoFill)
Draw Label L on picture pic using pen p. If align is NoAlign, the label will be centered
at user coordinate position; otherwise it will be aligned in the direction of align and
displaced from position by the PostScript offset align*labelmargin(p). The constant
Align can be used to align the bottom-left corner of the label at position. The Label L
can either be a string or the structure obtained by calling one of the functions

Label Label(string s="", pair position, align align=NoAlign,

pen p=nullpen, embed embed=Rotate, filltype filltype=NoFill);
Label Label(string s="", align align=NoAlign,

pen p=nullpen, embed embed=Rotate, filltype filltype=NoFill);

https://asymptote.sourceforge.io/gallery/PDFs/tensor.pdf
https://asymptote.sourceforge.io/gallery/PDFs/tensor.asy
https://asymptote.sourceforge.io/gallery/PDFs/Coons.pdf
https://asymptote.sourceforge.io/gallery/PDFs/Coons.asy
https://asymptote.sourceforge.io/gallery/3Dwebgl/BezierPatch.html
https://asymptote.sourceforge.io/gallery/3Dwebgl/BezierPatch.asy
https://asymptote.sourceforge.io/gallery/PDFs/rainbow.pdf
https://asymptote.sourceforge.io/gallery/PDFs/rainbow.asy
https://asymptote.sourceforge.io/gallery/PDFs/functionshading.pdf
https://asymptote.sourceforge.io/gallery/PDFs/functionshading.asy

Chapter 4: Drawing commands 19

Label Label(Label L, pair position, align align=NoAlign,

pen p=nullpen, embed embed=L.embed, filltype filltype=NoFill);
Label Label(Label L, align align=NoAlign,

pen p=nullpen, embed embed=L.embed, filltype filltype=NoFill);

The text of a Label can be scaled, slanted, rotated, or shifted by multiplying it on
the left by an affine transform (see Section 6.4 [Transforms|, page 46). For example,
rotate(45)*xscale(2)*L first scales L in the z direction and then rotates it counter-
clockwise by 45 degrees. The final position of a Label can also be shifted by a PostScript
coordinate translation: shift(10,0)*L. An explicit pen specified within the Label over-
rides other pen arguments. The embed argument determines how the Label should transform
with the embedding picture:

Shift only shift with embedding picture;
Rotate only shift and rotate with embedding picture (default);

Rotate(pair z)
rotate with (picture-transformed) vector z.

Slant only shift, rotate, slant, and reflect with embedding picture;
Scale shift, rotate, slant, reflect, and scale with embedding picture.

To add a label to a path, use

void label(picture pic=currentpicture, Label L, path g, align align=NoAlign,
pen p=currentpen, filltype filltype=NoFill);

By default the label will be positioned at the midpoint of the path. An alternative
label position (in the sense of point(path p, real t)) may be specified as a real value
for position in constructing the Label. The position Relative(real) specifies a location
relative to the total arclength of the path. These convenient abbreviations are predefined:

position BeginPoint=Relative(0);
position MidPoint=Relative(0.5);
position EndPoint=Relative(l);

Path labels are aligned in the direction align, which may be specified as an absolute
compass direction (pair) or a direction Relative(pair) measured relative to a north axis
in the local direction of the path. For convenience LeftSide, Center, and RightSide are
defined as Relative (W), Relative((0,0)), and Relative(E), respectively. Multiplying
LeftSide and RightSide on the left by a real scaling factor will move the label further
away from or closer to the path.

A label with a fixed-size arrow of length arrowlength pointing to b from direction dir
can be produced with the routine

void arrow(picture pic=currentpicture, Label L="", pair b, pair dir,
real length=arrowlength, align align=NoAlign,
pen p=currentpen, arrowbar arrow=Arrow, margin margin=EndMargin) ;
If no alignment is specified (either in the Label or as an explicit argument), the optional
Label will be aligned in the direction dir, using margin margin.
The function string graphic(string name, string options="") returns a string that
can be used to include an encapsulated PostScript (EPS) file. Here, name is the name

Chapter 4: Drawing commands 20

of the file to include and options is a string containing a comma-separated list of op-
tional bounding box (bb=11x 11y urx ury), width (width=value), height (height=value),
rotation (angle=value), scaling (scale=factor), clipping (clip=bool), and draft mode
(draft=bool) parameters. The layer () function can be used to force future objects to be
drawn on top of the included image:

label(graphic("file.eps","width=1cm"), (0,0) ,NE);
layer();

The string baseline(string s, string template="\strut") function can be used to
enlarge the bounding box of labels to match a given template, so that their baselines will
be typeset on a horizontal line. See Pythagoras.asy for an example.

One can prevent labels from overwriting one another with the overwrite pen attribute
(see [overwrite], page 46).

The structure object defined in plain_Label.asy allows Labels and frames to be
treated in a uniform manner. A group of objects may be packed together into single frame
with the routine

frame pack(pair align=2S ... object inset[]);

To draw or fill a box (or ellipse or other path) around a Label and return the bounding
object, use one of the routines

object draw(picture pic=currentpicture, Label L, envelope e,
real xmargin=0, real ymargin=xmargin, pen p=currentpen,
filltype filltype=NoFill, bool above=true);

object draw(picture pic=currentpicture, Label L, envelope e, pair position,
real xmargin=0, real ymargin=xmargin, pen p=currentpen,
filltype filltype=NoFill, bool above=true);

Here envelope is a boundary-drawing routine such as box, roundbox, or ellipse defined
in plain_boxes.asy (see [envelope|, page 48).

The function path[] texpath(Label L) returns the path array that TEX would fill to
draw the Label L.

The string minipage(string s, width=100pt) function can be used to format string
s into a paragraph of width width. This example uses minipage, clip, and graphic to
produce a CD label:

https://asymptote.sourceforge.io/gallery/Pythagoras.svg
https://asymptote.sourceforge.io/gallery/Pythagoras.asy

Chapter 4: Drawing commands 21

size(11.7cm,11.7cm);
asy(nativeformat(),"logo");

fill(unitcircle”"(scale(2/11.7)*unitcircle),

evenodd+rgb(124/255,205/255,124/255)) ;
label(scale(1l.1)*minipage(

"\centering\scriptsize \textbf{\LARGE {\tt Asymptote}\\

\smallskip
\small The Vector Graphics Language}\\
\smallskip
\textsc{Andy Hammerlindl, John Bowman, and Tom Prince}
https://asymptote.sourceforge.io\\
" 8cm), (0,0.6));
label(graphic("logo","height=7cm"), (0,-0.22));
clip(unitcircle”"(scale(2/11.7)*unitcircle),evenodd) ;

22

5 Bezier curves

Each interior node of a cubic spline may be given a direction prefix or suffix {dir}: the
direction of the pair dir specifies the direction of the incoming or outgoing tangent, respec-
tively, to the curve at that node. Exterior nodes may be given direction specifiers only on
their interior side.

A cubic spline between the node zy, with postcontrol point ¢y, and the node z;, with
precontrol point ¢, is computed as the Bezier curve

(1 —1)320 + 3t(1 — t)%co + 3t*(1 — t)ey + 32, 0<t < 1.

As illustrated in the diagram below, the third-order midpoint (ms) constructed from
two endpoints zg and z; and two control points ¢y and ¢y, is the point corresponding to
t = 1/2 on the Bezier curve formed by the quadruple (zg, ¢o, ¢1, z1). This allows one to
recursively construct the desired curve, by using the newly extracted third-order midpoint
as an endpoint and the respective second- and first-order midpoints as control points:

Here mg, my; and ms, are the first-order midpoints, ms; and my4 are the second-order
midpoints, and ms is the third-order midpoint. The curve is then constructed by recursively
applying the algorithm to (zo, mo, ms, ms) and (ms, my, ma, 21).

In fact, an analogous property holds for points located at any fraction ¢ in [0, 1] of each
segment, not just for midpoints (¢t = 1/2).

The Bezier curve constructed in this manner has the following properties:

e It is entirely contained in the convex hull of the given four points.
e [t starts heading from the first endpoint to the first control point and finishes heading
from the second control point to the second endpoint.

The user can specify explicit control points between two nodes like this:
draw((0,0)..controls (0,100) and (100,100)..(100,0));

However, it is usually more convenient to just use the .. operator, which tells Asymptote
to choose its own control points using the algorithms described in Donald Knuth’s mono-
graph, The MetaFontbook, Chapter 14. The user can still customize the guide (or path)
by specifying direction, tension, and curl values.

Chapter 5: Bezier curves 23

The higher the tension, the straighter the curve is, and the more it approximates a
straight line. One can change the spline tension from its default value of 1 to any real value
greater than or equal to 0.75 (cf. John D. Hobby, Discrete and Computational Geometry
1, 1986):
draw((100,0)..tension 2 ..(100,100)..(0,100));
draw((100,0)..tension 3 and 2 ..(100,100)..(0,100));
draw((100,0)..tension atleast 2 ..(100,100)..(0,100));

In these examples there is a space between 2 and ... This is needed as 2. is interpreted
as a numerical constant.

The curl parameter specifies the curvature at the endpoints of a path (0 means straight;
the default value of 1 means approximately circular):
draw((100,0){curl 0}..(100,100)..{curl 0}(0,100));

The MetaPost ... path connector, which requests, when possible, an inflection-free
curve confined to a triangle defined by the endpoints and directions, is implemented in
Asymptote as the convenient abbreviation :: for ..tension atleast 1 .. (the ellipsis ...
is used in Asymptote to indicate a variable number of arguments; see Section 6.11.3 [Rest
arguments|, page 67). For example, compare

draw((0,0){up}.. (100,25){right}. . (200,0){down}) ;

with

draw((0,0){up}::(100,25){right}:: (200,0){down});

Y

The --- connector is an abbreviation for ..tension atleast infinity.. and the &
connector concatenates two paths, after first stripping off the last node of the first path
(which normally should coincide with the first node of the second path).

24

6 Programming

Here is a short introductory example to the Asymptote programming language that high-
lights the similarity of its control structures with those of C, C++, and Java:

// This is a comment.

// Declaration: Declare x to be a real variable;
real x;

// Assignment: Assign the real variable x the value 1.
x=1.0;

// Conditional: Test if x equals 1 or not.
if(x == 1.0) {

write("x equals 1.0");
} else {

write("x is not equal to 1.0");

¥

// Loop: iterate 10 times
for(int i=0; i < 10; ++i) {
write(i);

¥

Asymptote supports while, do, break, and continue statements just as in C/C++. It
also supports the Java-style shorthand for iterating over all elements of an array:

// Iterate over an array

int[] array={1,1,2,3,5};

for(int k : array) {
write(k);

}

In addition, it supports many features beyond the ones found in those languages.

6.1 Data types
Asymptote supports the following data types (in addition to user-defined types):

void The void type is used only by functions that take or return no arguments.

bool a boolean type that can only take on the values true or false. For example:
bool b=true;

defines a boolean variable b and initializes it to the value true. If no initializer
is given:
bool b;

the value false is assumed.

Chapter 6:

bool3

int

real

pair

Programming 25

an extended boolean type that can take on the values true, default, or false.
A bool3 type can be cast to or from a bool. The default initializer for bool3 is
default.

an integer type; if no initializer is given, the implicit value 0 is assumed. The
minimum allowed value of an integer is intMin and the maximum value is
intMax.

a real number; this should be set to the highest-precision native floating-point
type on the architecture. The implicit initializer for reals is 0.0. Real numbers
have precision realEpsilon, with realDigits significant digits. The smallest
positive real number is realMin and the largest positive real number is realMax.
The variables inf and nan, along with the function bool isnan(real x) are
useful when floating-point exceptions are masked with the -mask command-line
option (the default in interactive mode).

complex number, that is, an ordered pair of real components (x,y). The real
and imaginary parts of a pair z can read as z.x and z.y. We say that x and y
are virtual members of the data element pair; they cannot be directly modified,
however. The implicit initializer for pairs is (0.0,0.0).

There are a number of ways to take the complex conjugate of a pair:

pair z=(3,4);
z=(z.%,-2.y);
z=z.x-I*z.y;
z=conj(z);

Here I is the pair (0,1). A number of built-in functions are defined for pairs:

pair conj(pair z)
returns the conjugate of z;

real length(pair z)
returns the complex modulus |z| of its argument z. For example,

pair z=(3,4);
length(z);

returns the result 5. A synonym for length(pair) is abs(pair).
The function abs2(pair z) returns |z|?;

real angle(pair z, bool warn=true)
returns the angle of z in radians in the interval [-pi,pi] or 0 if warn
is false and z=(0,0) (rather than producing an error);

real degrees(pair z, bool warn=true)
returns the angle of z in degrees in the interval [0,360) or 0 if warn
is false and z=(0,0) (rather than producing an error);

pair unit(pair z)
returns a unit vector in the direction of the pair z;

pair expi(real angle)
returns a unit vector in the direction angle measured in radians;

Chapter 6: Programming 26

triple

pair dir(real degrees)
returns a unit vector in the direction degrees measured in degrees;

real xpart(pair z)
returns z.x;

real ypart(pair z)
returns z.y;

pair realmult(pair z, pair w)
returns the element-by-element product (z.x*w.x,z.y*w.y);

real dot(explicit pair z, explicit pair w)
returns the dot product z.x*w.x+z.y*w.y;

real cross(explicit pair z, explicit pair w)
returns the 2D scalar product z.x*w.y-z.y*w.x;

real orient(pair a, pair b, pair c);

returns a positive (negative) value if a--b--c--cycle is oriented
counterclockwise (clockwise) or zero if all three points are colinear.
Equivalently, a positive (negative) value is returned if c lies to the
left (right) of the line through a and b or zero if c lies on this line.
The value returned can be expressed in terms of the 2D scalar cross
product as cross(a-c,b-c), which is the determinant

la.x a.y 1|

Ilb.x b.y 1|

lc.x c.y 1|

real incircle(pair a, pair b, pair c, pair d);

returns a positive (negative) value if d lies inside (outside) the circle
passing through the counterclockwise-oriented points a,b, ¢ or zero
if d lies on the this circle. The value returned is the determinant
la.x a.y a.x"2+a.y"2 1|

[b.x b.y b.x"2+b.y"2 1|

l[c.x c.y c.x"2+c.y"2 1|

ld.x d.y d.x"2+d.y"2 1|

pair minbound(pair z, pair w)
returns (min(z.x,w.x) ,min(z.y,w.y));

pair maxbound(pair z, pair w)
returns (max(z.x,w.x) ,max(z.y,w.y)).

an ordered triple of real components (x,y,z) used for three-dimensional draw-
ings. The respective components of a triple v can read as v.x, v.y, and v.z.
The implicit initializer for triples is (0.0,0.0,0.0).

Here are the built-in functions for triples:

real length(triple v)
returns the length |v| of its argument v. A synonym for

length(triple) is abs(triple). The function abs2(triple v)
returns |v|?;

Chapter 6: Programming 27

string

real polar(triple v, bool warn=true)
returns the colatitude of v measured from the z axis in radians or
0 if warn is false and v=0 (rather than producing an error);

real azimuth(triple v, bool warn=true)
returns the longitude of v measured from the x axis in radians or 0
if warn is false and v.x=v.y=0 (rather than producing an error);

real colatitude(triple v, bool warn=true)
returns the colatitude of v measured from the z axis in degrees or
0 if warn is false and v=0 (rather than producing an error);

real latitude(triple v, bool warn=true)
returns the latitude of v measured from the xy plane in degrees or
0 if warn is false and v=0 (rather than producing an error);

real longitude(triple v, bool warn=true)
returns the longitude of v measured from the x axis in degrees or 0
if warn is false and v.x=v.y=0 (rather than producing an error);

triple unit(triple v)
returns a unit triple in the direction of the triple v;

triple expi(real polar, real azimuth)
returns a unit triple in the direction (polar,azimuth) measured
in radians;

triple dir(real colatitude, real longitude)
returns a unit triple in the direction (colatitude,longitude)
measured in degrees;

real xpart(triple v)
returns v.x;

real ypart(triple v)
returns v.y;

real zpart(triple v)
returns v.z;

real dot(triple u, triple v)
returns the dot product u.x*v.x+u.y*v.y+u.z*v.z;

triple cross(triple u, triple v)
returns the cross product

(U.y*V.2-U.2*%V.y,U. Z¥V.X~U.X*V.2Z,U.X*XV.Y-V.X*U.V);

triple minbound(triple u, triple v)
returns (min(u.x,v.x),min(u.y,v.y) ,min(u.z,v.z));

triple maxbound(triple u, triple v)
returns (max(u.x,v.x),max(u.y,v.y),max(u.z,v.z)).

a character string, implemented using the STL string class.

Chapter 6: Programming 28

Strings delimited by double quotes (") are subject to the following mappings
to allow the use of double quotes in TEX (e.g. for using the babel package, see
Section 8.21 [babel], page 98):

e \" mapsto "

e \\ maps to \\
Strings delimited by single quotes (') have the same mappings as character
strings in ANSI C:

e \'maps to’

e \" maps to "

e \? maps to ?

e \\ maps to backslash

e \a maps to alert

e \b maps to backspace

e \f maps to form feed

e \n maps to newline

e \r maps to carriage return

e \t maps to tab

e \v maps to vertical tab

e \0-\377 map to corresponding octal byte

e \x0-\xFF map to corresponding hexadecimal byte
The implicit initializer for strings is the empty string "". Strings may be con-

catenated with the + operator. In the following string functions, position 0
denotes the start of the string:

int length(string s)
returns the length of the string s;

int find(string s, string t, int pos=0)
returns the position of the first occurrence of string t in string s at
or after position pos, or -1 if t is not a substring of s;

int rfind(string s, string t, int pos=-1)
returns the position of the last occurrence of string t in string s at
or before position pos (if pos=-1, at the end of the string s), or -1
if t is not a substring of s;

string insert(string s, int pos, string t)
returns the string formed by inserting string t at position pos in s;

string erase(string s, int pos, int n)
returns the string formed by erasing the string of length n (if n=-1,
to the end of the string s) at position pos in s;

string substr(string s, int pos, int n=-1)
returns the substring of s starting at position pos and of length n
(if n=-1, until the end of the string s);

Chapter 6: Programming 29

string reverse(string s)
returns the string formed by reversing string s;

string replace(string s, string before, string after)
returns a string with all occurrences of the string before in the
string s changed to the string after;

string replace(string s, string[][] table)
returns a string constructed by translating in string s all
occurrences of the string before in an array table of string pairs
{before,after} to the corresponding string after;

string[] split(string s, string delimiter="")
returns an array of strings obtained by splitting s into substrings
delimited by delimiter (an empty delimiter signifies a space, but
with duplicate delimiters discarded);

string[] array(string s)
returns an array of strings obtained by splitting s into individ-
ual characters. The inverse operation is provided by operator
+(...string(] a).

string format(string s, int n, string locale="")
returns a string containing n formatted according to the C-style
format string s using locale locale (or the current locale if an
empty string is specified), following the behaviour of the C function
fprintf), except that only one data field is allowed.

string format (string s=defaultformat, bool forcemath=false, string

s=defaultseparator, real x, string locale="")
returns a string containing x formatted according to the C-style
format string s using locale locale (or the current locale if an
empty string is specified), following the behaviour of the C function
fprintf), except that only one data field is allowed, trailing zeros
are removed by default (unless # is specified), and if s specifies
math mode or forcemath=true, TEX is used to typeset scientific
notation using the defaultseparator="\!\times\!";;

int hex(string s);
casts a hexadecimal string s to an integer;

int ascii(string s);
returns the ASCII code for the first character of string s;

string string(real x, int digits=realDigits)
casts x to a string using precision digits and the C locale;

string locale(string s="")
sets the locale to the given string, if nonempty, and returns the
current locale;

string time(string format="%a %b %d %T %Z %Y")
returns the current time formatted by the ANSI C routine strftime
according to the string format using the current locale. Thus

Chapter 6: Programming 30

time();
time("%a %b %d %KH:Y%M:%S %hZ %Y");

are equivalent ways of returning the current time in the default
format used by the UNIX date command;

int seconds(string t="", string format="")

returns the time measured in seconds after the Epoch (Thu Jan
01 00:00:00 UTC 1970) as determined by the ANSI C routine
strptime according to the string format using the current locale,
or the current time if t is the empty string. Note that the "%z"
extension to the POSIX strptime specification is ignored by the
current GNU C Library. If an error occurs, the value -1 is returned.
Here are some examples:

seconds("Mar 02 11:12:36 AM PST 2007","%b %d %r PST %Y");
seconds (time ("%b %d %r %z WY"),"%b %d %r %z %Y");

seconds (time("%b %d %r %Z %Y"),"%b %d %r "+time("%Z")+" %Y");
1+(seconds()-seconds("Jan 1","%b %d"))/(24%60%60) ;

The last example returns today’s ordinal date, measured from the
beginning of the year.

string time(int seconds, string format="%a %b %d %T %Z %Y")
returns the time corresponding to seconds seconds after the Epoch
(Thu Jan 01 00:00:00 UTC 1970) formatted by the ANSI C routine
strftime according to the string format using the current locale.
For example, to return the date corresponding to 24 hours ago:

time (seconds () -24*60%60) ;

int system(string s)
int system(stringl[] s)
if the setting safe is false, call the arbitrary system command s;

void asy(string format, bool overwrite=false ... stringl[] s)
conditionally process each file name in array s in a new envi-
ronment, using format format, overwriting the output file only if
overwrite is true;

void abort(string s="")
aborts execution (with a non-zero return code in batch mode); if
string s is nonempty, a diagnostic message constructed from the
source file, line number, and s is printed;

void assert(bool b, string s="")
aborts execution with an error message constructed from s if
b=false;

void exit ()
exits (with a zero error return code in batch mode);

void sleep(int seconds)
pauses for the given number of seconds;

Chapter 6: Programming 31

void usleep(int microseconds)
pauses for the given number of microseconds;

void beep()
produces a beep on the console;

As in C/C++, complicated types may be abbreviated with typedef (see the example in
Section 6.11 [Functions|, page 64).

6.2 Paths and guides

path

a cubic spline resolved into a fixed path. The implicit initializer for paths is
nullpath.

For example, the routine circle(pair c, real r), which returns a Bezier curve
approximating a circle of radius r centered on c, is based on unitcircle (see
[unitcircle], page 12):

path circle(pair c, real r)

{

return shift(c)*scale(r)*unitcircle;

}

If high accuracy is needed, a true circle may be produced with the routine
Circle defined in the module graph:

import graph;

path Circle(pair c, real r, int n=nCircle);

A circular arc consistent with circle centered on ¢ with radius r from anglel
to angle?2 degrees, drawing counterclockwise if angle2 >= anglel, can be con-
structed with

path arc(pair c, real r, real anglel, real angle2);

One may also specify the direction explicitly:

path arc(pair c, real r, real anglel, real angle2, bool direction);

Here the direction can be specified as CCW (counter-clockwise) or CW (clock-
wise). For convenience, an arc centered at ¢ from pair z1 to z2 (assuming
|z2-c|=|z1-c|) in the may also be constructed with
path arc(pair c, explicit pair zl, explicit pair z2,
bool direction=CCW)
If high accuracy is needed, true arcs may be produced with routines in the
module graph that produce Bezier curves with n control points:
import graph;
path Arc(pair c, real r, real anglel, real angle2, bool direction,
int n=nCircle);
path Arc(pair c, real r, real anglel, real angle2, int n=nCircle);
path Arc(pair c, explicit pair zl, explicit pair z2,
bool direction=CCW, int n=nCircle);
An ellipse can be drawn with the routine

path ellipse(pair c, real a, real b)

Chapter 6: Programming 32

{
return shift(c)*scale(a,b)*unitcircle;

}
A brace can be constructed between pairs a and b with
path brace(pair a, pair b, real amplitude=bracedefaultratioxlength(b-a));

This example illustrates the use of all five guide connectors discussed in Chap-
ter 3 [Tutorial], page 9, and Chapter 5 [Bezier curves], page 22:

size(300,0);

pair[] z=new pair[10];

z[0]=(0,100); z[1]1=(50,0); z[2]1=(180,0);

for(int n=3; n <= 9; ++n)
z[n]=z[n-3]1+(200,0);

path p=z[0]..z[1]---z[2]: :{up}z[3]
&z[3]..2[4]--z[5]: :{up}tz[6]
&z[6]::z[7]1---z[8]..{up}z[9];

draw(p,grey+linewidth(4mm)) ;

dot(z);

Here are some useful functions for paths:

int length(path p);
This is the number of (linear or cubic) segments in path p. If p is
cyclic, this is the same as the number of nodes in p.

int size(path p);
This is the number of nodes in the path p. If p is cyclic, this is the
same as length(p).

bool cyclic(path p);
returns true iff path p is cyclic.

bool straight(path p, int i);
returns true iff the segment of path p between node i and node
i+1 is straight.

bool piecewisestraight (path p)
returns true iff the path p is piecewise straight.

Chapter 6: Programming 33

pair point(path p, int t);
If p is cyclic, return the coordinates of node t mod length(p).
Otherwise, return the coordinates of node t, unless t < 0 (in
which case point (0) is returned) or t > length(p) (in which case
point (length(p)) is returned).

pair point(path p, real t);
This returns the coordinates of the point between node floor (t)
and floor(t)+1 corresponding to the cubic spline parameter t-
floor(t) (see Chapter 5 [Bezier curves|, page 22). If t lies outside
the range [0,length(p)], it is first reduced modulo length(p) in
the case where p is cyclic or else converted to the corresponding
endpoint of p.

pair dir(path p, int t, int sign=0, bool normalize=true);
If sign < 0, return the direction (as a pair) of the incoming tangent
to path p at node t; if sign > 0, return the direction of the outgoing
tangent. If sign=0, the mean of these two directions is returned.

pair dir(path p, real t, bool normalize=true) ;
returns the direction of the tangent to path p at the point between
node floor(t) and floor(t)+1 corresponding to the cubic spline
parameter t-floor(t) (see Chapter 5 [Bezier curves|, page 22).

pair dir(path p)
returns dir(p,length(p)).

pair dir(path p, path q)
returns unit(dir(p)+dir(q)).

pair accel(path p, int t, int sign=0);
If sign < 0, return the acceleration of the incoming path p at node
t; if sign > 0, return the acceleration of the outgoing path. If
sign=0, the mean of these two accelerations is returned.

pair accel(path p, real t);
returns the acceleration of the path p at the point t.

real radius(path p, real t);
returns the radius of curvature of the path p at the point t.

pair precontrol(path p, int t);
returns the precontrol point of p at node t.

pair precontrol(path p, real t);
returns the effective precontrol point of p at parameter t.

pair postcontrol(path p, int t);
returns the postcontrol point of p at node t.

pair postcontrol(path p, real t);
returns the effective postcontrol point of p at parameter t.

Chapter 6: Programming 34

real arclength(path p);
returns the length (in user coordinates) of the piecewise linear or
cubic curve that path p represents.

real arctime(path p, real L);
returns the path "time", a real number between 0 and the length
of the path in the sense of point(path p, real t), at which the
cumulative arclength (measured from the beginning of the path)
equals L.

pair arcpoint(path p, real L);
returns point (p,arctime(p,L)).

real dirtime(path p, pair z);
returns the first "time", a real number between 0 and the length of
the path in the sense of point (path, real), at which the tangent
to the path has the direction of pair z, or -1 if this never happens.

real reltime(path p, real 1);
returns the time on path p at the relative fraction 1 of its arclength.

pair relpoint(path p, real 1);
returns the point on path p at the relative fraction 1 of its arclength.

pair midpoint (path p);
returns the point on path p at half of its arclength.

path reverse(path p);
returns a path running backwards along p.

path subpath(path p, int a, int b);
returns the subpath of p running from node a to node b. If a > b,
the direction of the subpath is reversed.

path subpath(path p, real a, real b);
returns the subpath of p running from path time a to path time b,
in the sense of point(path, real). If a > b, the direction of the
subpath is reversed.

real[] intersect(path p, path q, real fuzz=-1);

If p and q have at least one intersection point, return a real array
of length 2 containing the times representing the respective path
times along p and q, in the sense of point(path, real), for one
such intersection point (as chosen by the algorithm described on
page 137 of The MetaFontbook). The computations are performed
to the absolute error specified by fuzz, or if fuzz < 0, to machine
precision. If the paths do not intersect, return a real array of length
0.

real[] [] intersections(path p, path q, real fuzz=-1);
Return all (unless there are infinitely many) intersection times of
paths p and q as a sorted array of real arrays of length 2 (see [sort],
page 73). The computations are performed to the absolute error
specified by fuzz, or if fuzz < 0, to machine precision.

Chapter 6: Programming 35

real[] intersections(path p, explicit pair a, explicit pair b, real
fuzz=-1);
Return all (unless there are infinitely many) intersection times of
path p with the (infinite) line through points a and b as a sorted
array. The intersections returned are guaranteed to be correct to
within the absolute error specified by fuzz, or if fuzz < 0, to ma-
chine precision.

real[] times(path p, real x)
returns all intersection times of path p with the vertical line through
(x,0).

real[] times(path p, explicit pair z)
returns all intersection times of path p with the horizontal line
through (0,z.y).

real[] mintimes(path p)
returns an array of length 2 containing times at which path p
reaches its minimal horizontal and vertical extents, respectively.

real[] maxtimes(path p)
returns an array of length 2 containing times at which path p
reaches its maximal horizontal and vertical extents, respectively.

pair intersectionpoint(path p, path q, real fuzz=-1);
returns the intersection point point (p, intersect(p,q,fuzz) [0]).

pair[] intersectionpoints(path p, path q, real fuzz=-1);
returns an array containing all intersection points of the paths p
and q.

pair extension(pair P, pair Q, pair p, pair q);
returns the intersection point of the extensions of the line segments
P--Q and p--q, or if the lines are parallel, (infinity,infinity).

slice cut(path p, path knife, int n);
returns the portions of path p before and after the nth intersection
of p with path knife as a structure slice (if no intersection exist is
found, the entire path is considered to be ‘before’ the intersection):

struct slice {
path before,after;

¥

The argument n is treated as modulo the number of intersections.

slice firstcut(path p, path knife);
equivalent to cut(p,knife,0); Note that firstcut.after plays
the role of the MetaPost cutbefore command.

slice lastcut(path p, path knife);
equivalent to cut (p,knife,-1); Note that lastcut.before plays
the role of the MetaPost cutafter command.

Chapter 6: Programming 36

guide

path buildcycle(. .. path[] p);
This returns the path surrounding a region bounded by a list of two
or more consecutively intersecting paths, following the behaviour
of the MetaPost buildcycle command.

pair min(path p);
returns the pair (left,bottom) for the path bounding box of path p.

pair max(path p);
returns the pair (right,top) for the path bounding box of path p.

int windingnumber (path p, pair z);
returns the winding number of the cyclic path p relative to the point
z. The winding number is positive if the path encircles z in the
counterclockwise direction. If z lies on p the constant undefined
(defined to be the largest odd integer) is returned.

bool interior(int windingnumber, pen fillrule)
returns true if windingnumber corresponds to an interior point ac-
cording to fillrule.

bool inside(path p, pair z, pen fillrule=currentpen) ;
returns true iff the point z lies inside or on the edge of the region
bounded by the cyclic path p according to the fill rule fillrule
(see [fillrule], page 42).

int inside(path p, path g, pen fillrule=currentpen) ;
returns 1 if the cyclic path p strictly contains q according to the
fill rule fillrule (see [fillrule], page 42), -1 if the cyclic path q
strictly contains p, and O otherwise.

pair inside(path p, pen fillrule=currentpen) ;
returns an arbitrary point strictly inside a cyclic path p according
to the fill rule fillrule (see [fillrule], page 42).

path[] strokepath(path g, pen p=currentpen) ;
returns the path array that PostScript would fill in drawing path
g with pen p.

an unresolved cubic spline (list of cubic-spline nodes and control points). The
implicit initializer for a guide is nullpath; this is useful for building up a guide
within a loop.

A guide is similar to a path except that the computation of the cubic spline is
deferred until drawing time (when it is resolved into a path); this allows two
guides with free endpoint conditions to be joined together smoothly. The solid
curve in the following example is built up incrementally as a guide, but only
resolved at drawing time; the dashed curve is incrementally resolved at each
iteration, before the entire set of nodes (shown in red) is known:

size(200);

real mexican(real x) {return (1-8x"2)*exp(-(4x72));}

Chapter 6: Programming 37

int n=30;
real a=1.5;
real width=2a/n;

guide hat;
path solved;

for(int i=0; i < n; ++i) {
real t=-a+ix*width;
pair z=(t,mexican(t));
hat=hat..z;
solved=solved. .z;

draw(hat) ;
dot (hat,red);
draw(solved,dashed) ;

We point out an efficiency distinction in the use of guides and paths:
guide g;
for(int i=0; i < 10; ++i)
g=g——(i,1);
path p=g;
runs in linear time, whereas
path p;
for(int i=0; i < 10; ++i)
p=p—-(i,1);
runs in quadratic time, as the entire path up to that point is copied at each
step of the iteration.
The following routines can be used to examine the individual elements of a
guide without actually resolving the guide to a fixed path (except for internal
cycles, which are resolved):

int size(guide g);
Analogous to size(path p).

Chapter 6: Programming 38

int length(guide g);
Analogous to length(path p).

bool cyclic(path p);
Analogous to cyclic(path p).

pair point(guide g, int t);
Analogous to point (path p, int t).

guide reverse(guide g);
Analogous to reverse(path p). If g is cyclic and also contains a
secondary cycle, it is first solved to a path, then reversed. If g is
not cyclic but contains an internal cycle, only the internal cycle is
solved before reversal. If there are no internal cycles, the guide is
reversed but not solved to a path.

pair[] dirSpecifier(guide g, int i);
This returns a pair array of length 2 containing the outgoing (in el-
ement 0) and incoming (in element 1) direction specifiers (or (0,0)
if none specified) for the segment of guide g between nodes i and
i+1.

pair[] controlSpecifier(guide g, int i);
If the segment of guide g between nodes i and i+1 has explicit
outgoing and incoming control points, they are returned as elements
0 and 1, respectively, of a two-element array. Otherwise, an empty
array is returned.

tensionSpecifier tensionSpecifier(guide g, int i);
This returns the tension specifier for the segment of guide g
between nodes i and i+1. The individual components of the
tensionSpecifier type can be accessed as the virtual members
in, out, and atLeast.

real[] curlSpecifier(guide g);
This returns an array containing the initial curl specifier (in element
0) and final curl specifier (in element 1) for guide g.

As a technical detail we note that a direction specifier given to nullpath mod-
ifies the node on the other side: the guides

a..{up}nullpath..b;

c..nullpath{up}..d;

e..{uptnullpath{down}..f;

are respectively equivalent to

a..nullpath..{up}b;

c{up?}. .nullpath. .d;

e{down}. .nullpath..{up}f;

6.3 Pens

In Asymptote, pens provide a context for the four basic drawing commands (see Chapter 4
[Drawing commands], page 14). They are used to specify the following drawing attributes:

Chapter 6: Programming 39

color, line type, line width, line cap, line join, fill rule, text alignment, font, font size,
pattern, overwrite mode, and calligraphic transforms on the pen nib. The default pen used
by the drawing routines is called currentpen. This provides the same functionality as the
MetaPost command pickup. The implicit initializer for pens is defaultpen.

Pens may be added together with the nonassociative binary operator +. This will add
the colors of the two pens. All other non-default attributes of the rightmost pen will
override those of the leftmost pen. Thus, one can obtain a yellow dashed pen by saying
dashed+red+green or red+green+dashed or red+dashed+green. The binary operator *
can be used to scale the color of a pen by a real number, until it saturates with one or more
color components equal to 1.

e Colors are specified using one of the following colorspaces:

pen gray(real g);
This produces a grayscale color, where the intensity g lies in the interval
[0,1], with 0.0 denoting black and 1.0 denoting white.

pen rgb(real r, real g, real b);
This produces an RGB color, where each of the red, green, and blue inten-
sities r, g, b, lies in the interval [0,1].

pen RGB(int r, int g, int b);
This produces an RGB color, where each of the red, green, and blue inten-
sities r, g, b, lies in the interval [0,255].

pen cmyk(real c, real m, real y, real k);
This produces a CMYK color, where each of the cyan, magenta, yellow,
and black intensities c, m, y, k, lies in the interval [0,1].

pen invisible;
This special pen writes in invisible ink, but adjusts the bounding box as
if something had been drawn (like the \phantom command in TEX). The
function bool invisible(pen) can be used to test whether a pen is invis-
ible.

The default color is black; this may be changed with the routine defaultpen(pen).
The function colorspace(pen p) returns the colorspace of pen p as a string ("gray",
"I‘gb", "cmyk", or " n)'

The function real[] colors(pen) returns the color components of a pen. The
functions pen gray(pen), pen rgb(pen), and pen cmyk(pen) return new pens
obtained by converting their arguments to the respective color spaces. The function
colorless(pen=currentpen) returns a copy of its argument with the color attributes
stripped (to avoid color mixing).

A 6-character RGB hexadecimal string can be converted to a pen with the routine
pen rgb(string s);
e A pen can be converted to a hexadecimal string with string hex(pen p);

Various shades and mixtures of the grayscale primary colors black and white, RGB
primary colors red, green, and blue, and RGB secondary colors cyan, magenta,
and yellow are defined as named colors, along with the CMYK primary colors Cyan,
Magenta, Yellow, and Black, in the module plain:

Chapter 6: Programming 40
Falered Falecyan black
ightred ightcyan white
mediumred mediumcyan
re cyan orange
heavyred heavycyan fuchsia
brown deepcyan
darkbrown darkcyan H chartreuse

springgreen
Falegreen ka
ghtgreen ghtmagenta I purple
mediumgreen mediummagenta royalblue
green magenta
heavygreen heavymagenta Cyan
deepgreen deepmagenta agenta
darkgreen darkmagenta Yellow
- Black
Faleblue] Faleyellow
ightblue | lightyellow cmyk(red)
medlumblue mediumyellow cmyk(blue)
| yellow cmyk(green)
heavgblue ightolive
deepblue olive
darkblue darkolive
(] Falegray
| lightgray
mediumgray
gray
heavygray
deepgray
darkgray

The standard 140 RGB X11 colors can be imported with the command

import xllcolors;

and the standard 68 CMYK TEX colors can be imported with the command

import texcolors;

Note that there is some overlap between these two standards and the definitions of
some colors (e.g. Green) actually disagree.

Asymptote also comes with a asycolors.sty LaTeX package that defines to LaTeX
CMYK versions of Asymptote’s predefined colors, so that they can be used directly
within LaTeX strings. Normally, such colors are passed to LaTeX via a pen argument;
however, to change the color of only a portion of a string, say for a slide presentation,
(see Section 8.19 [slide], page 98) it may be desirable to specify the color directly to
LaTeX. This file can be passed to LaTeX with the Asymptote command

usepackage ("asycolors");

The structure hsv defined in plain_pens.asy may be used to convert between HSV
and RGB spaces, where the hue h is an angle in [0, 360) and the saturation s and value
v lie in [0,1]:

pen p=hsv(180,0.5,0.75);

write(p); // ([default], red=0.375, green=0.75, blue=0.75)
hsv g=p;
write(q.h,q.s,q.v); // 180 0.5 0.75

e Line types are specified with the function pen linetype(real[] a, real offset=0,
bool scale=true, bool adjust=true), where a is an array of real array numbers.

Chapter 6: Programming 41

The optional parameter offset specifies where in the pattern to begin. The first
number specifies how far (if scale is true, in units of the pen line width; otherwise in
PostScript units) to draw with the pen on, the second number specifies how far to
draw with the pen off, and so on. If adjust is true, these spacings are automatically
adjusted by Asymptote to fit the arclength of the path. Here are the predefined line
types:

pen solid=linetype(new reall]);

pen dotted=linetype(new reall] {0,4});

pen dashed=linetype(new real[] {8,8});

pen longdashed=linetype(new reall[] {24,83});

pen dashdotted=linetype(new reall] {8,8,0,8});

pen longdashdotted=linetype(new reall] {24,8,0,8});

pen Dotted(pen p=currentpen) {return linetype(new reall[] {0,3})+2*linewidth(p);}
pen Dotted=Dotted();

The default line type is solid; this may be changed with defaultpen(pen). The

line type of a pen can be determined with the functions real[] linetype(pen

p=currentpen), real offset(pen p), bool scale(pen p), and bool adjust(pen p)
e The pen line width is specified in PostScript units with pen linewidth(real). The

default line width is 0.5 bp; this value may be changed with defaultpen(pen). The line

width of a pen is returned by real linewidth(pen p=currentpen). For convenience,

in the module plain_pens we define

void defaultpen(real w) {defaultpen(linewidth(w));}

pen operator +(pen p, real w) {return p+linewidth(w);}

pen operator +(real w, pen p) {return linewidth(w)+p;}

so that one may set the line width like this:

defaultpen(2);
pen p=red+0.5;

e A pen with a specific PostScript line cap is returned on calling linecap with an
integer argument:

pen squarecap=linecap(0);
pen roundcap=linecap(1);
pen extendcap=linecap(2);
The default line cap, roundcap, may be changed with defaultpen(pen). The line cap
of a pen is returned by int linecap(pen p=currentpen).

e A pen with a specific PostScript join style is returned on calling linejoin with an
integer argument:

pen miterjoin=linejoin(0);

Chapter 6: Programming 42

pen roundjoin=linejoin(1);

pen beveljoin=linejoin(2);

The default join style, roundjoin, may be changed with defaultpen(pen).The join
style of a pen is returned by int linejoin(pen p=currentpen).

e A pen with a specific PostScript miter limit is returned by calling miterlimit (real).
The default miterlimit, 10.0, may be changed with defaultpen(pen). The miter limit
of a pen is returned by real miterlimit(pen p=currentpen).

e A pen with a specific PostScript fill rule is returned on calling fillrule with an
integer argument:

pen zerowinding=fillrule(O);
pen evenodd=fillrule(1);

The fill rule, which identifies the algorithm used to determine the insideness of a path or
array of paths, only affects the c1lip, £ill, and inside functions. For the zerowinding
fill rule, a point z is outside the region bounded by a path if the number of upward
intersections of the path with the horizontal line z--z+infinity minus the number
of downward intersections is zero. For the evenodd fill rule, z is considered to be
outside the region if the total number of such intersections is even. The default fill
rule, zerowinding, may be changed with defaultpen(pen). The fill rule of a pen is
returned by int fillrule(pen p=currentpen).

e A pen with a specific text alignment setting is returned on calling basealign with an
integer argument:

pen nobasealign=basealign(0);
pen basealign=basealign(1);

The default setting, nobasealign,which may be changed with defaultpen(pen),
causes the label alignment routines to use the full label bounding box for alignment.
In contrast, basealign requests that the TEX baseline be respected. The base align
setting of a pen is returned by int basealign(pen p=currentpen).

e The font size is specified in TEX points (1 pt = 1/72.27 inches) with the function pen
fontsize(real size, real lineskip=1.2*size). The default font size, 12pt, may
be changed with defaultpen(pen). Nonstandard font sizes may require inserting
import fontsize;
at the beginning of the file (this requires the typelcm package available from

http://mirror.ctan.org/macros/latex/contrib/typelcm/
and included in recent LaTeX distributions). The font size and line skip of a pen
can be examined with the routines real fontsize(pen p=currentpen) and real
lineskip(pen p=currentpen), respectively.

e A pen using a specific KTEX NFSS font is returned by calling the function pen
font (string encoding, string family, string series, string shape). The
default setting, font ("0T1","cmr","m","n"), corresponds to 12pt Computer Modern
Roman; this may be changed with defaultpen(pen). The font setting of a pen is
returned by string font (pen p=currentpen).

Alternatively, one may select a fixed-size TEX font (on which fontsize has no effect)
like "cmr12" (12pt Computer Modern Roman) or "pcrr" (Courier) using the function

http://mirror.ctan.org/macros/latex/contrib/type1cm/

Chapter 6: Programming 43

pen font (string name). An optional size argument can also be given to scale the font
to the requested size: pen font (string name, real size)

A nonstandard font command can be generated with pen fontcommand(string).
A convenient interface to the following standard PostScript fonts is also provided:

pen AvantGarde(string series="m", string shape="n");

pen Bookman(string series="m", string shape="n");

pen Courier(string series="m", string shape="n");

pen Helvetica(string series="m", string shape="n");

pen NewCenturySchoolBook(string series="m", string shape="n");
pen Palatino(string series="m", string shape="n");

pen TimesRoman(string series="m", string shape="n");

pen ZapfChancery(string series="m", string shape="n");

pen Symbol(string series="m", string shape="n");

pen ZapfDingbats(string series="m", string shape="n");

e Starting with the 2018/04/01 release, IXTEX takes UTF-8 as the new default input
encoding. However, you can still set different input encoding (so as the font, font en-
coding or even language context). Here is an example for cp1251 and Russian language
in Cyrillic script (font encoding T2A):

texpreamble ("\usepackage [math] {anttor}");
texpreamble ("\usepackage [T2A] {fontenc}");
texpreamble ("\usepackage [cp1251] {inputenc}");
texpreamble ("\usepackage [russian] {babel}");

Support for Chinese, Japanese, and Korean fonts is provided by the CJK package:
https://ctan.org/pkg/cjk

The following commands enable the CJK song family (within a label, you can also
temporarily switch to another family, say kai, by prepending "\CJKfamily{kail}" to
the label string):

texpreamble ("\usepackage{CJK}
\AtBeginDocument{\begin{CJK*}{GBK}{song}}
\AtEndDocument{\clearpage\end{CJK*}}");

e The transparency of a pen can be changed with the command:
pen opacity(real opacity=1, string blend="Compatible");

The opacity can be varied from 0 (fully transparent) to the default value of 1 (opaque),
and blend specifies one of the following foreground—background blending operations:

"Compatible","Normal","Multiply","Screen","Overlay","SoftLight",
"HardLight","ColorDodge","ColorBurn", "Darken","Lighten","Difference",
"Exclusion","Hue","Saturation","Color","Luminosity",

as described in https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/
PDF32000_2008.pdf. Since PostScript does not support transparency, this feature is
only effective with the -f pdf output format option; other formats can be produced
from the resulting PDF file with the ImageMagick convert program. Labels are always
drawn with an opacity of 1. A simple example of transparent filling is provided in the
example file transparency.asy.

https://ctan.org/pkg/cjk
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf
https://asymptote.sourceforge.io/gallery/transparency.svg
https://asymptote.sourceforge.io/gallery/transparency.asy

Chapter 6: Programming 44

e PostScript commands within a picture may be used to create a tiling pattern, iden-

tified by the string name, for fill and draw operations by adding it to the global
PostScript frame currentpatterns, with optional left-bottom margin 1b and right-
top margin rt.

import patterns;
void add(string name, picture pic, pair 1b=0, pair rt=0);

To £ill or draw using pattern name, use the pen pattern("name"). For example,
rectangular tilings can be constructed using the routines picture tile(real
Hx=bmm, real Hy=0, pen p=currentpen, filltype filltype=NoFill), picture
checker (real Hx=bmm, real Hy=0, pen p=currentpen), and picture brick(real
Hx=bmm, real Hy=0, pen p=currentpen) defined in module patterns:

size(0,90);
import patterns;

add("tile",tile());
add("filledtilewithmargin",tile(6mm,4mm,red,Fill), (1mm, 1mm), (1mm, 1mm)) ;
add ("checker",checker());

add("brick",brick());

real s=2.5;

filldraw(unitcircle,pattern("tile"));
filldraw(shift(s,0)*unitcircle,pattern("filledtilewithmargin"));
filldraw(shift(2s,0)*unitcircle,pattern("checker"));
filldraw(shift(3s,0)*unitcircle,pattern("brick"));

e |
[T T T N
[T T T 1
A T T T T T\
(T T T T T T\
[T T T T T T
T T T T T T
\L T T T T T
N[T T T 17
L T T T]
N T T]
~LL
Hatch patterns can be generated with the routines picture hatch(real H=5mm,
pair dir=NE, pen p=currentpen), picture crosshatch(real H=bmm, pen
p=currentpen):
size(0,100);

import patterns;

add("hatch" ,hatch());
add ("hatchback" ,hatch(NW)) ;
add("crosshatch",crosshatch(3mm)) ;

real s=1.25;
filldraw(unitsquare,pattern("hatch"));

Chapter 6: Programming 45

filldraw(shift(s,0)*unitsquare,pattern("hatchback"));
filldraw(shift (2s,0)*unitsquare,pattern("crosshatch"));

You may need to turn off aliasing in your PostScript viewer for patterns to appear
correctly. Custom patterns can easily be constructed, following the examples in module
patterns. The tiled pattern can even incorporate shading (see [gradient shading],
page 16), as illustrated in this example (not included in the manual because not all
printers support PostScript 3):

size(0,100);
import patterns;

real d=4mm;

picture tiling;

path square=scale(d)*unitsquare;
axialshade(tiling,square,white, (0,0) ,black,(d,d));
fi11(tiling,shift(d,d) *square,blue);
add("shadedtiling",tiling);

filldraw(unitcircle,pattern("shadedtiling"));

e One can specify a custom pen nib as an arbitrary polygonal path with pen
makepen(path); this path represents the mark to be drawn for paths containing a
single point. This pen nib path can be recovered from a pen with path nib(pen).
Unlike in MetaPost, the path need not be convex:

size (200);

pen convex=makepen(scale(10)*polygon(8))+grey;
draw((1,0.4),convex) ;
draw((0,0)---(1,1)..(2,0)--cycle,convex) ;

pen nonconvex=scale(10)x*

makepen ((0,0)--(0.25,-1)--(0.5,0.25)--(1,0)--(0.5,1.25)-—cycle) +red;
draw((0.5,-1.5) ,nonconvex) ;
draw((0,-1.5)..(1,-0.5)..(2,-1.5) ,nonconvex) ;

Chapter 6: Programming 46

¢

The value nullpath represents a circular pen nib (the default); an elliptical pen can
be achieved simply by multiplying the pen by a transform: yscale(2)*currentpen.

e One can prevent labels from overwriting one another by using the pen attribute
overwrite, which takes a single argument:

Allow Allow labels to overwrite one another. This is the default behaviour (unless
overridden with defaultpen(pen).

Suppress Suppress, with a warning, each label that would overwrite another label.

SuppressQuiet
Suppress, without warning, each label that would overwrite another label.

Move Move a label that would overwrite another out of the way and issue a warn-
ing. As this adjustment is during the final output phase (in PostScript
coordinates) it could result in a larger figure than requested.

MoveQuiet
Move a label that would overwrite another out of the way, without warn-
ing. As this adjustment is during the final output phase (in PostScript
coordinates) it could result in a larger figure than requested.

The routine defaultpen () returns the current default pen attributes. Calling the routine
resetdefaultpen() resets all pen default attributes to their initial values.

6.4 Transforms

Asymptote makes extensive use of affine transforms. A pair (x,y) is transformed by the
transform t=(t.x,t.y,t.xx,t.xy,t.yx,t.yy) to (x',y"'), where

X' =t.x+t.xx *xx+t.xy*xy

y'=t.y+t.yx xx+ tyy*xy

This is equivalent to the PostScript transformation [t.xx t.yx t.xy t.yy t.x t.y].

Transforms can be applied to pairs, guides, paths, pens, strings, transforms, frames, and
pictures by multiplication (via the binary operator *) on the left (see [circle], page 31, for
an example). Transforms can be composed with one another and inverted with the function

Chapter 6: Programming

47

transform inverse(transform t); they can also be raised to any integer power with the

~ operator.

The built-in transforms are:

transform identity;
the identity transform;

transform shift(pair z) ;
translates by the pair z;

transform shift(real x, real y);
translates by the pair (x,y);

transform xscale(real x);
scales by x in the = direction;

transform yscale(real y);
scales by y in the y direction;

transform scale(real s);
scale by s in both x and y directions;

transform scale(real x, real y);
scale by x in the z direction and by y in the y direction;

transform slant(real s);
maps (x,y) —> (x+s*y,y);
transform rotate(real angle, pair z=(0,0));
rotates by angle in degrees about z;

transform reflect(pair a, pair b);
reflects about the line a--b.

transform zeroTransform;
the zero transform;

The implicit initializer for transforms is identity (). The routines shift (transform
t) and shiftless(transformt) return the transforms (t.x,t.y,0,0,0,0) and
(0,0,t.xx,t.xy,t.yx,t.yy) respectively. The function bool isometry(transform t)

can be used to test if t is an isometry (preserves distance).

6.5 Frames and pictures

frame Frames are canvases for drawing in PostScript coordinates. While working
with frames directly is occasionally necessary for constructing deferred draw-
ing routines, pictures are usually more convenient to work with. The im-
plicit initializer for frames is newframe. The function bool empty(frame f)
returns true only if the frame f is empty. A frame may be erased with the
erase (frame) routine. The functions pair min(frame) and pair max(frame)
return the (left,bottom) and (right,top) coordinates of the frame bounding box,
respectively. The contents of frame src may be appended to frame dest with

the command

void add(frame dest, frame src);

Chapter 6: Programming 48

picture

or prepended with
void prepend(frame dest, frame src);

A frame obtained by aligning frame f in the direction align, in a manner
analogous to the align argument of label (see Section 4.4 [label], page 18), is
returned by

frame align(frame f, pair align);

To draw or fill a box or ellipse around a label or frame and return the boundary
as a path, use one of the predefined envelope routines

path box(frame f, Label L="", real xmargin=0,
real ymargin=xmargin, pen p=currentpen,
filltype filltype=NoFill, bool above=true);
path roundbox(frame f, Label L="", real xmargin=0,
real ymargin=xmargin, pen p=currentpen,
filltype filltype=NoFill, bool above=true) ;
path ellipse(frame f, Label L="", real xmargin=0,
real ymargin=xmargin, pen p=currentpen,
filltype filltype=NoFill, bool above=true);
Pictures are high-level structures (see Section 6.8 [Structures|, page 57) defined
in the module plain that provide canvases for drawing in user coordinates. The
default picture is called currentpicture. A new picture can be created like
this:
picture pic;
Anonymous pictures can be made by the expression new picture.
The size routine specifies the dimensions of the desired picture:
void size(picture pic=currentpicture, real x, real y=x,
bool keepAspect=Aspect);

If the x and y sizes are both 0, user coordinates will be interpreted as
PostScript coordinates. In this case, the transform mapping pic to the final
output frame is identity().

If exactly one of x or y is 0, no size restriction is imposed in that direction; it
will be scaled the same as the other direction.

If keepAspect is set to Aspect or true, the picture will be scaled with its aspect
ratio preserved such that the final width is no more than x and the final height
is no more than y.

If keepAspect is set to IgnoreAspect or false, the picture will be scaled in
both directions so that the final width is x and the height is y.

To make the user coordinates of picture pic represent multiples of x units in
the x direction and y units in the y direction, use

void unitsize(picture pic=currentpicture, real x, real y=x);
When nonzero, these x and y values override the corresponding size parameters
of picture pic.

The routine

void size(picture pic=currentpicture, real xsize, real ysize,

Chapter 6: Programming 49

pair min, pair max);
forces the final picture scaling to map the user coordinates box (min,max) to a
region of width xsize and height ysize (when these parameters are nonzero).

Alternatively, calling the routine

transform fixedscaling(picture pic=currentpicture, pair min,
pair max, pen p=nullpen, bool warn=false);

will cause picture pic to use a fixed scaling to map user coordinates in
box(min,max) to the (already specified) picture size, taking account of the
width of pen p. A warning will be issued if the final picture exceeds the
specified size.

A picture pic can be fit to a frame and output to a file prefix.format using
image format format by calling the shipout function:

void shipout(string prefix=defaultfilename, picture pic=currentpicture,

orientation orientation=orientation,

string format="", bool wait=false, bool view=true,

string options="", string script="",

light light=currentlight, projection P=currentprojection)
The default output format, PostScript, may be changed with the -f or -tex
command-line options. The options, script, and projection parameters are
only relevant for 3D pictures. If defaultfilename is an empty string, the prefix
outprefix () will be used.

A shipout () command is added implicitly at file exit. The default page orienta-
tion is Portrait; this may be modified by changing the variable orientation.
To output in landscape mode, simply set the variable orientation=Landscape
or issue the command
shipout (Landscape) ;
To rotate the page by —90 degrees, use the orientation Seascape. The orien-
tation UpsideDown rotates the page by 180 degrees.
A picture pic can be explicitly fit to a frame by calling
frame pic.fit(real xsize=pic.xsize, real ysize=pic.ysize,

bool keepAspect=pic.keepAspect);
The default size and aspect ratio settings are those given to the size command
(which default to 0, 0, and true, respectively). The transformation that would
currently be used to fit a picture pic to a frame is returned by the member
function pic.calculateTransform().
In certain cases (e.g. 2D graphs) where only an approximate size estimate for
pic is available, the picture fitting routine
frame pic.scale(real xsize=this.xsize, real ysize=this.ysize,

bool keepAspect=this.keepAspect);

(which scales the resulting frame, including labels and fixed-size objects) will
enforce perfect compliance with the requested size specification, but should not
normally be required.
To draw a bounding box with margins around a picture, fit the picture to a
frame using the function

Chapter 6: Programming 50

frame bbox(picture pic=currentpicture, real xmargin=0,
real ymargin=xmargin, pen p=currentpen,
filltype filltype=NoFill);

Here £illtype specifies one of the following fill types:
FillDraw Fill the interior and draw the boundary.

FillDraw(real xmargin=0, real ymargin=xmargin, pen fillpen=nullpen,
pen drawpen=nullpen) If fillpen is nullpen, fill with the drawing
pen; otherwise fill with pen fillpen. If drawpen is nullpen, draw
the boundary with £illpen; otherwise with drawpen. An optional
margin of xmargin and ymargin can be specified.

Fill Fill the interior.

Fill(real xmargin=0, real ymargin=xmargin, pen p=nullpen)
If p is nullpen, fill with the drawing pen; otherwise fill with pen p.
An optional margin of xmargin and ymargin can be specified.
NoFill Do not fill.

Draw Draw only the boundary.

Draw(real xmargin=0, real ymargin=xmargin, pen p=nullpen)
If pisnullpen, draw the boundary with the drawing pen; otherwise
draw with pen p. An optional margin of xmargin and ymargin can
be specified.

UnFill Clip the region.

UnFill(real xmargin=0, real ymargin=xmargin)
Clip the region and surrounding margins xmargin and ymargin.
RadialShade (pen penc, pen penr)

Fill varying radially from penc at the center of the bounding box
to penr at the edge.

RadialShadeDraw(real xmargin=0, real ymargin=xmargin, pen penc,
pen penr, pen drawpen=nullpen) Fill with RadialShade and draw
the boundary.

For example, to draw a bounding box around a picture with a 0.25 cm margin
and output the resulting frame, use the command:
shipout (bbox (0.25cm)) ;

A picture may be fit to a frame with the background color pen p, using the
function bbox (p,Fill).

To pad a picture to a precise size in both directions, fit the picture to a frame
using the function

frame pad(picture pic=currentpicture, real xsize=pic.xsize,
real ysize=pic.ysize, filltype filltype=NoFill);
The functions

pair min(picture pic, user=false);

Chapter 6: Programming 51

pair max(picture pic, user=false);

pair size(picture pic, user=false);

calculate the bounds that picture pic would have if it were currently fit to a
frame using its default size specification. If user is false the returned value is
in PostScript coordinates, otherwise it is in user coordinates.

The function
pair point(picture pic=currentpicture, pair dir, bool user=true);

is a convenient way of determining the point on the bounding box of pic in the
direction dir relative to its center, ignoring the contributions from fixed-size
objects (such as labels and arrowheads). If user is true the returned value is
in user coordinates, otherwise it is in PostScript coordinates.

The function
pair truepoint(picture pic=currentpicture, pair dir, bool user=true);

is identical to point, except that it also accounts for fixed-size objects, using
the scaling transform that picture pic would have if currently fit to a frame
using its default size specification. If user is true the returned value is in user
coordinates, otherwise it is in PostScript coordinates.

Sometimes it is useful to draw objects on separate pictures and add one picture
to another using the add function:

void add(picture src, bool group=true,
filltype filltype=NoFill, bool above=true);
void add(picture dest, picture src, bool group=true,
filltype filltype=NoFill, bool above=true);

The first example adds src to currentpicture; the second one adds src to
dest. The group option specifies whether or not the graphical user interface
should treat all of the elements of src as a single entity (see Chapter 11 [GUI],
page 175), £illtype requests optional background filling or clipping, and above
specifies whether to add src above or below existing objects.

There are also routines to add a picture or frame src specified in postscript
coordinates to another picture dest (or currentpicture) about the user coor-
dinate position:
void add(picture src, pair position, bool group=true,

filltype filltype=NoFill, bool above=true);
void add(picture dest, picture src, pair position,

bool group=true, filltype filltype=NoFill, bool above=true);
void add(picture dest=currentpicture, frame src, pair position=0,

bool group=true, filltype filltype=NoFill, bool above=true);
void add(picture dest=currentpicture, frame src, pair position,

pair align, bool group=true, filltype filltype=NoFill,

bool above=true);
The optional align argument in the last form specifies a direction to use for
aligning the frame, in a manner analogous to the align argument of label (see
Section 4.4 [label], page 18). However, one key difference is that when align
is not specified, labels are centered, whereas frames and pictures are aligned so

Chapter 6: Programming 52

that their origin is at position. Illustrations of frame alignment can be found
in the examples [errorbars], page 110, and [image|, page 130. If you want to
align three or more subpictures, group them two at a time:

picture pici;

real size=50;

size(picl,size);

fill(picl,(0,0)--(50,100)--(100,0)--cycle,red);

picture pic2;
size(pic2,size);
fill(pic2,unitcircle,green);

picture pic3;
size(pic3,size);
f£i1l(pic3,unitsquare,blue);

picture pic;
add(pic,picl.fit(),(0,0),N);
add(pic,pic2.fit(),(0,0),108);

add(pic.fit(),(0,0),N);
add(pic3.£fit(), (0,0),108);

Alternatively, one can use attach to automatically increase the size of picture
dest to accommodate adding a frame src about the user coordinate position:

void attach(picture dest=currentpicture, frame src,

pair position=0, bool group=true,

filltype filltype=NoFill, bool above=true);
void attach(picture dest=currentpicture, frame src,

pair position, pair align, bool group=true,

Chapter 6: Programming 53

filltype filltype=NoFill, bool above=true);

To erase the contents of a picture (but not the size specification), use the
function

void erase(picture pic=currentpicture);

To save a snapshot of currentpicture, currentpen, and currentprojection,
use the function save().

To restore a snapshot of currentpicture, currentpen, and
currentprojection, use the function restore().

Many further examples of picture and frame operations are provided in the base
module plain.

It is possible to insert verbatim PostScript commands in a picture with one

of the routines

void postscript(picture pic=currentpicture, string s);

void postscript(picture pic=currentpicture, string s, pair min,
pair max)

Here min and max can be used to specify explicit bounds associated with the
resulting PostScript code.

Verbatim TEX commands can be inserted in the intermediate LaTeX output file
with one of the functions

void tex(picture pic=currentpicture, string s);
void tex(picture pic=currentpicture, string s, pair min, pair max)

Here min and max can be used to specify explicit bounds associated with the
resulting TEX code.

To issue a global TEX command (such as a TEX macro definition) in the TEX
preamble (valid for the remainder of the top-level module) use:

void texpreamble(string s);

The TEX environment can be reset to its initial state, clearing all macro defini-
tions, with the function

void texreset();

The routine

void usepackage(string s, string options="");
provides a convenient abbreviation for

texpreamble ("\usepackage["+options+"]{"+s+"}");
that can be used for importing LaTeX packages.

6.6 Files

Asymptote can read and write text files (including comma-separated value) files and
portable XDR (External Data Representation) binary files.

An input file can be opened with

input (string name="", bool check=true, string comment="#", string mode="");
reading is then done by assignment:

file fin=input("test.txt");

Chapter 6: Programming 54

real a=fin;

If the optional boolean argument check is false, no check will be made that the file
exists. If the file does not exist or is not readable, the function bool error(file) will
return true. The first character of the string comment specifies a comment character. If
this character is encountered in a data file, the remainder of the line is ignored. When
reading strings, a comment character followed immediately by another comment character
is treated as a single literal comment character. If Asymptote is compiled with support for
libcurl, name can be a URL.

Unless the -noglobalread command-line option is specified, one can change the current
working directory for read operations to the contents of the string s with the function
string cd(string s), which returns the new working directory. If string s is empty, the
path is reset to the value it had at program startup.

When reading pairs, the enclosing parenthesis are optional. Strings are also read by
assignment, by reading characters up to but not including a newline. In addition, Asymptote
provides the function string getc(file) to read the next character (treating the comment
character as an ordinary character) and return it as a string.

A file named name can be open for output with
file output(string name="", bool update=false, string comment="#", string mode="");

If update=false, any existing data in the file will be erased and only write operations can
be used on the file. If update=true, any existing data will be preserved, the position will
be set to the end-of-file, and both reading and writing operations will be enabled. For
security reasons, writing to files in directories other than the current directory is allowed
only if the -globalwrite (or -nosafe) command-line option is specified. Reading from files
in other directories is allowed unless the -noglobalread command-line option is specified.
The function string mktemp(string s) may be used to create and return the name of a
unique temporary file in the current directory based on the string s.

There are two special files: stdin, which reads from the keyboard, and stdout, which
writes to the terminal. The implicit initializer for files is null.

Data of a built-in type T can be written to an output file by calling one of the functions

write(string s="", T x, suffix suffix=endl ... T[]);
write(file file, string s="", T x, suffix suffix=none ... T[]);
write(file file=stdout, string s="", explicit T[] x ... TOI[1);

write(file file=stdout, TI[][]);
write(file file=stdout, T[] [1[]);
write(suffix suffix=endl);

write(file file, suffix suffix=none);

If file is not specified, stdout is used and terminated by default with a newline. If
specified, the optional identifying string s is written before the data x. An arbitrary number
of data values may be listed when writing scalars or one-dimensional arrays. The suffix
may be one of the following: none (do nothing), flush (output buffered data), endl (termi-
nate with a newline and flush), newl (terminate with a newline), D0Sendl (terminate with
a DOS newline and flush), DOSnewl (terminate with a DOS newline), tab (terminate with a
tab), or comma (terminate with a comma). Here are some simple examples of data output:

file fout=output("test.txt");

Chapter 6: Programming 55

write(fout,1); // Writes "1"
write(fout); // Writes a new line
write(fout,"List: ",1,2,3); // Writes "List: 1 2 3"

A file may be opened with mode="xdr", to read or write double precision (64-bit) reals
and single precision (32-bit) integers in Sun Microsystem’s XDR (External Data Repre-
sentation) portable binary format (available on all UNIX platforms). Alternatively, a file
may also be opened with mode="binary" to read or write double precision reals and sin-
gle precision integers in the native (nonportable) machine binary format, or to read the
entire file into a string. The virtual member functions file singlereal (bool b=true)
and file singleint (bool b=true) be used to change the precision of real and integer
I/O operations, respectively, for an XDR or binary file £. Similarly, the function file
signedint (bool b=true) can be used to modify the signedness of integer reads and writes
for an XDR or binary file £.

The virtual members name, mode, singlereal, singleint, and signedint may be used
to query the respective parameters for a given file.

One can test a file for end-of-file with the boolean function eof(file), end-of-line
with eol(file), and for I/O errors with error(file). One can flush the output buffers
with flush(file), clear a previous I/O error with clear(file), and close the file with
close(file). The function int precision(file file=stdout, int digits=0) sets the
number of digits of output precision for file to digits, provided digits is nonzero, and
returns the previous precision setting. The function int tell(file) returns the current
position in a file relative to the beginning. The routine seek(file file, int pos) can
be used to change this position, where a negative value for the position pos is interpreted
as relative to the end-of-file. For example, one can rewind a file file with the command
seek(file,0) and position to the final character in the file with seek(file,-1). The
command seekeof (file) sets the position to the end of the file.

Assigning settings.scroll=n for a positive integer n requests a pause after every n
output lines to stdout. One may then press Enter to continue to the next n output lines,
s followed by Enter to scroll without further interruption, or q followed by Enter to quit
the current output operation. If n is negative, the output scrolls a page at a time (i.e. by
one less than the current number of display lines). The default value, settings.scroll=0,
specifies continuous scrolling.

The routines

string getstring(string name="", string default="", string prompt="",
bool store=true);
int getint(string name="", int default=0, string prompt="",
bool store=true);
real getreal(string name="", real default=0, string prompt="",
bool store=true);
pair getpair(string name="", pair default=0, string prompt="",
bool store=true);
triple gettriple(string name="", triple default=(0,0,0), string prompt="",
bool store=true);

defined in the module plain may be used to prompt for a value from stdin using the GNU
readline library. If store=true, the history of values for name is stored in the file ".asy_

Chapter 6: Programming 56

history_"+name (see [history], page 173). The most recent value in the history will be
used to provide a default value for subsequent runs. The default value (initially default)
is displayed after prompt. These functions are based on the internal routines

string readline(string prompt="", string name="", bool tabcompletion=false);
void saveline(string name, string value, bool store=true);

Here, readline prompts the user with the default value formatted according to prompt,
while saveline is used to save the string value in a local history named name, optionally
storing the local history in a file ".asy_history_"+name.

The routine history(string name, int n=1) can be used to look up the n most recent
values (or all values up to historylines if n=0) entered for string name. The routine
history(int n=0) returns the interactive history. For example,

write(output("transcript.asy") ,history());
outputs the interactive history to the file transcript.asy.

The function int delete(string s) deletes the file named by the string s. Unless the
-globalwrite (or -nosafe) option is enabled, the file must reside in the current directory.
The function int rename(string from, string to) may be used to rename file from to
file to. Unless the ~globalwrite (or -nosafe) option is enabled, this operation is restricted
to the current directory. The functions

int convert(string args="", string file="", string format="");
int animate(string args="", string file="", string format="");

call the ImageMagick commands convert and animate, respectively, with the arguments
args and the file name constructed from the strings file and format.

6.7 Variable initializers

A variable can be assigned a value when it is declared, as in int x=3; where the variable x
is assigned the value 3. As well as literal constants such as 3, arbitary expressions can be
used as initializers, as in real x=2*sin(pi/2);.

A variable is not added to the namespace until after the initializer is evaluated, so for
example, in
int x=2;
int x=b*x;
the x in the initializer on the second line refers to the variable x declared on the first line.

The second line, then, declares a variable x shadowing the original x and initializes it to
the value 10.

Variables of most types can be declared without an explicit initializer and they will be
initialized by the default initializer of that type:

e Variables of the numeric types int, real, and pair are all initialized to zero; variables
of type triple are initialized to 0=(0,0,0).

e boolean variables are initialized to false.
e string variables are initialized to the empty string.
e transform variables are initialized to the identity transformation.

e path and guide variables are initialized to nullpath.

Chapter 6: Programming 57

e pen variables are initialized to the default pen.
e frame and picture variables are initialized to empty frames and pictures, respectively.

e file variables are initialized to null.

The default initializers for user-defined array, structure, and function types are explained
in their respective sections. Some types, such as code, do not have default initializers. When
a variable of such a type is introduced, the user must initialize it by explicitly giving it a
value.

The default initializer for any type T can be redeclared by defining the function T
operator init (). For instance, int variables are usually initialized to zero, but in

int operator init() {

return 3;
}
int y;
the variable y is initialized to 3. This example was given for illustrative purposes; redeclaring
the initializers of built-in types is not recommended. Typically, operator init is used to
define sensible defaults for user-defined types.

The special type var may be used to infer the type of a variable from its initializer. If
the initializer is an expression of a unique type, then the variable will be defined with that
type. For instance,
var x=5;
var y=4.3;
var reddash=red+dashed;
is equivalent to
int x=5;
real y=4.3;
pen reddash=red+dashed;

var may also be used with the extended for loop syntax.
int[] a = {1,2,3};
for (var x : a)

write(x);

6.8 Structures

Users may also define their own data types as structures, along with user-defined operators,
much as in C++. By default, structure members are public (may be read and modified
anywhere in the code), but may be optionally declared restricted (readable anywhere
but writeable only inside the structure where they are defined) or private (readable and
writable only inside the structure). In a structure definition, the keyword this can be used
as an expression to refer to the enclosing structure. Any code at the top-level scope within
the structure is executed on initialization.

Variables hold references to structures. That is, in the example:

struct T {
int x;

¥

Chapter 6: Programming 58

T foo;
T bar=foo;
bar.x=5;

The variable foo holds a reference to an instance of the structure T. When bar is
assigned the value of foo, it too now holds a reference to the same instance as foo does.
The assignment bar.x=5 changes the value of the field x in that instance, so that foo.x
will also be equal to 5.

The expression new T creates a new instance of the structure T and returns a reference
to that instance. In creating the new instance, any code in the body of the record definition
is executed. For example:

int Tcount=0;

struct T {
int x;
++Tcount;

¥

T foo=new T;
T foo;

Here, new T produces a new instance of the class, which causes Tcount to be incremented,
tracking the number of instances produced. The declarations T foo=new T and T foo are
equivalent: the second form implicitly creates a new instance of T. That is, after the
definition of a structure T, a variable of type T is initialized to a new instance (new T) by
default. During the definition of the structure, however, variables of type T are initialized
to null by default. This special behaviour is to avoid infinite recursion of creating new
instances in code such as

struct tree {
int value;
tree left;
tree right;
}

The expression null can be cast to any structure type to yield a null reference, a reference
that does not actually refer to any instance of the structure. Trying to use a field of a null
reference will cause an error.

The function bool alias(T,T) checks to see if two structure references refer to the same
instance of the structure (or both to null). In the example at the beginning of this section,
alias(foo,bar) would return true, but alias(foo,new T) would return false, as new T
creates a new instance of the structure T. The boolean operators == and != are by default
equivalent to alias and 'alias respectively, but may be overwritten for a particular type
(for example, to do a deep comparison).

Here is a simple example that illustrates the use of structures:
struct S {

real a=1;

real f(real a) {return a+this.a;}

¥

Chapter 6: Programming 59

S s; // Initializes s with new S;
write(s.f(2)); // Outputs 3

S operator + (S s1, S s2)
{
S result;
result.a=sl.a+s2.a;
return result;

}

write((s+s).£(0)); // Outputs 2

It is often convenient to have functions that construct new instances of a structure. Say
we have a Person structure:

struct Person {
string firstname;
string lastname;

}

Person joe;
joe.firstname="Joe";
joe.lastname="Jones";

Creating a new Person is a chore; it takes three lines to create a new instance and to
initialize its fields (that’s still considerably less effort than creating a new person in real life,
though).

We can reduce the work by defining a constructor function Person(string,string):
struct Person {

string firstname;
string lastname;

static Person Person(string firstname, string lastname) {
Person p=new Person;
p-firstname=firstname;
p-lastname=lastname;
return p;

Person joe=Person.Person("Joe", "Jones");

While it is now easier than before to create a new instance, we still have to refer to the
constructor by the qualified name Person.Person. If we add the line

from Person unravel Person;

Chapter 6: Programming 60

immediately after the structure definition, then the constructor can be used without quali-
fication: Person joe=Person("Joe", "Jones") ;.

The constructor is now easy to use, but it is quite a hassle to define. If you write a lot of
constructors, you will find that you are repeating a lot of code in each of them. Fortunately,
your friendly neighbourhood Asymptote developers have devised a way to automate much
of the process.

If, in the body of a structure, Asymptote encounters the definition of a function of
the form void operator init(args), it implicitly defines a constructor function of the
arguments args that uses the void operator init function to initialize a new instance
of the structure. That is, it essentially defines the following constructor (assuming the
structure is called Foo):

static Foo Foo(args) {
Foo instance=new Foo;
instance.operator init(args);
return instance;

}

This constructor is also implicitly copied to the enclosing scope after the end of the
structure definition, so that it can used subsequently without qualifying it by the structure
name. OQur Person example can thus be implemented as:

struct Person {
string firstname;
string lastname;

void operator init(string firstname, string lastname) {
this.firstname=firstname;
this.lastname=lastname;

+
}

Person joe=Person("Joe", "Jones");

The use of operator init to implicitly define constructors should not be confused with
its use to define default values for variables (see Section 6.7 [Variable initializers|, page 56).
Indeed, in the first case, the return type of the operator init must be void while in the
second, it must be the (non-void) type of the variable.

The function cputime () returns a structure cputime with cumulative CPU times broken
down into the fields parent .user, parent.system, child.user, and child.system, along
with the cumulative wall clock time in parent.clock, all measured in seconds. For con-
venience, the incremental fields change.user, change.system, and change.clock indicate
the change in the corresponding fields since the last call to cputime (). The function

void write(file file=stdout, string s="", cputime c,
string format=cputimeformat, suffix suffix=none);

displays the incremental user cputime followed by “u”, the incremental system cputime
followed by “s”, the total user cputime followed by “U”, and the total system cputime
followed by “S”.

Chapter 6: Programming 61

Much like in C++, casting (see Section 6.13 [Casts|, page 78) provides for an elegant
implementation of structure inheritance, including a virtual function v:

struct parent {
real x;
void operator init(int x) {this.x=x;}
void v(int) {write(0);}
void £ {v(1);}

void write(parent p) {write(p.x);}

struct child {
parent parent;
real y=3;
void operator init(int x) {parent.operator init(x);}
void v(int x) {write(x);}
parent.v=v;
void f()=parent.f;

parent operator cast(child child) {return child.parent;}

parent p=parent(1);
child c=child(2);

write(c); // Outputs 2;
p.fO; // Outputs 0;
c.fTQ; // Outputs 1;
write(c.parent.x); // Outputs 2;
write(c.y); // Outputs 3;

For further examples of structures, see Legend and picture in the Asymptote base
module plain.

6.9 Operators

6.9.1 Arithmetic & logical operators

Asymptote uses the standard binary arithmetic operators. However, when one integer is
divided by another, both arguments are converted to real values before dividing and a real
quotient is returned (since this is typically what is intended; otherwise one can use the
function int quotient(int x, int y), which returns greatest integer less than or equal to
x/y). In all other cases both operands are promoted to the same type, which will also be
the type of the result:

+ addition

Chapter 6: Programming 62

- subtraction

* multiplication

/ division

integer division; equivalent to quotient(x,y). Noting that the Python3 com-

munity adopted our comment symbol (//) for integer division, we decided to
reciprocate and use their comment symbol for integer division in Asymptote!

% modulo; the result always has the same sign as the divisor. In particular, this
makes qx(p # q)+p % q == p for all integers p and nonzero integers q.

power; if the exponent (second argument) is an int, recursive multiplication is
used; otherwise, logarithms and exponentials are used (** is a synonym for ~).

The usual boolean operators are also defined:

== equals

I= not equals

< less than

<= less than or equals

>= greater than or equals

> greater than

&& and (with conditional evaluation of right-hand argument)
& and

'l or (with conditional evaluation of right-hand argument)
| or

XOr
! not

Asymptote also supports the C-like conditional syntax:
bool positive=(pi > 0) 7 true : false;

The function T interp(T a, T b, real t) returns (1-t)*a+t*b for nonintegral built-in
arithmetic types T. If a and b are pens, they are first promoted to the same color space.

Asymptote also defines bitwise functions int AND(int,int), int OR(int,int),
int XOR(int,int), int NOT(int), int CLZ(int) (count leading zeros), int CTZ(int)
(count trailing zeros), int popcount(int) (count bits populated by ones), and int
bitreverse(int a, int bits) (reverse bits within a word of length bits).

6.9.2 Self & prefix operators

As in C, each of the arithmetic operators +, =, *, /, #, %, and ~ can be used as a self
operator. The prefix operators ++ (increment by one) and -- (decrement by one) are also
defined. For example,

int i=1;

Chapter 6: Programming 63

i+= 2;

int j=++i;

is equivalent to the code
int i=1;

i=i+2;

int j=i=i+1;

However, postfix operators like i++ and i-- are not defined (because of the inherent
ambiguities that would arise with the —- path-joining operator). In the rare instances where
i++ and i-- are really needed, one can substitute the expressions (++i-1) and (--i+1),
respectively.

6.9.3 User-defined operators

The following symbols may be used with operator to define or redefine operators on struc-
tures and built-in types:
-+ x /T V< >==l=<=>=& | 77 .. 11 -= ——— 4+
<< >> § $$ € Q@ <>
The operators on the second line have precedence one higher than the boolean operators <,
>, <=, and >=.

Guide operators like .. may be overloaded, say, to write a user function that produces
a new guide from a given guide:

guide dots(... guidel[] g)=operator ..;

guide operator ..(... guidel] g) {
guide G;
if(g.length > 0) {
write(gl[0]);
G=g[0];
}
for(int i=1; i < g.length; ++i) {
write(gl[il);
write();
G=dots(G,gl[i]);
}
return G;

by

guide g=(0,0){up}..{SW}(100,100){NE?}. .{curl 3}(50,50)..(10,10);
write("g=",g);

6.10 Implicit scaling

If a numeric literal is in front of certain types of expressions, then the two are multiplied:
int x=2;

real y=2.0;

real cm=72/2.540005;

Chapter 6: Programming

write(3x);
write(2.5x%);
write(3y);
write(-1.602e-19 y);
write(0.5(x,y));
write(2x72);

write (3x+2y);

write (3(x+2y));
write(3sin(x));
write(3(sin(x))"2);
write(10cm);

This produces the output
6
5
6
-3.204e-19
(1,1)
8
10
18
2.72789228047704

2.48046543129542
283.464008929116

6.11 Functions

64

Asymptote functions are treated as variables with a signature (non-function variables have
null signatures). Variables with the same name are allowed, so long as they have distinct

signatures.

Function arguments are passed by value. To pass an argument by reference, simply

enclose it in a structure (see

Here are some significant

Section 6.8 [Structures|, page 57).

features of Asymptote functions:

1. Variables with signatures (functions) and without signatures (nonfunction variables)

are distinct:

int x, xO);

x=5;

x=new int() {return
x=x();

17;3;
// calls x() and puts the result, 17, in the scalar x

2. Traditional function definitions are allowed:

int sqr(int x)
{
return x*Xx;

}

sqr=null;

// but the function is still just a variable.

Chapter 6: Programming 65

3. Casting can be used to resolve ambiguities:

int a, a(), b, b(); // Valid: creates four variables.

a=b; // Invalid: assignment is ambiguous.

a=(int) b; // Valid: resolves ambiguity.

(int) (a=b); // Valid: resolves ambiguity.

(int) a=b; // Invalid: cast expressions cannot be L-values.
int c(Q);

c=a; // Valid: only one possible assignment.

4. Anonymous (so-called "high-order") functions are also allowed:

typedef int intop(int);
intop adder(int m)
{

return new int(int n) {return m+n;};

}
intop addby7=adder(7) ;
write(addby7(1)); // Writes 8.

5. One may redefine a function £, even for calls to £ in previously declared functions, by
assigning another (anonymous or named) function to it. However, if £ is overloaded
by a new function definition, previous calls will still access the original version of f, as
illustrated in this example:

void £ {
write("hi");

}
void g() {
£0O;
}
g(; // writes "hi"
f=new VOld() {write(ubye,,);};
g(); // writes "bye"

void f() {write("overloaded");};

f(Q); // writes "overloaded"
g(); // writes "bye"

6. Anonymous functions can be used to redefine a function variable that has been declared
(and implicitly initialized to the null function) but not yet explicitly defined:

void f(bool b);

void g(bool b) {
if(b) £(b);

Chapter 6: Programming 66

else write(b);

}

f=new void(bool b) {
write(b);
g(false);
};

g(true); // Writes true, then writes false.

Asymptote is the only language we know of that treats functions as variables, but allows
overloading by distinguishing variables based on their signatures.

Functions are allowed to call themselves recursively. As in C++, infinite nested recursion
will generate a stack overflow (reported as a segmentation fault, unless a fully working
version of the GNU library 1ibsigsegv (e.g. 2.4 or later) is installed at configuration time).

6.11.1 Default arguments

Asymptote supports a more flexible mechanism for default function arguments than C++:
they may appear anywhere in the function prototype. Because certain data types are
implicitly cast to more sophisticated types (see Section 6.13 [Casts], page 78) one can
often avoid ambiguities by ordering function arguments from the simplest to the most
complicated. For example, given

real f(int a=1, real b=0) {return a+b;}
then f (1) returns 1.0, but £(1.0) returns 2.0.

The value of a default argument is determined by evaluating the given Asymptote ex-
pression in the scope where the called function is defined.

6.11.2 Named arguments

It is sometimes difficult to remember the order in which arguments appear in a function
declaration. Named (keyword) arguments make calling functions with multiple arguments
easier. Unlike in the C and C++ languages, an assignment in a function argument is inter-
preted as an assignment to a parameter of the same name in the function signature, not
within the local scope. The command-line option -d may be used to check Asymptote code
for cases where a named argument may be mistaken for a local assignment.

When matching arguments to signatures, first all of the keywords are matched, then
the arguments without names are matched against the unmatched formals as usual. For
example,
int f£(int x, int y) {

return 10x+y;

}

write(£f(4,x=3));

outputs 34, as x is already matched when we try to match the unnamed argument 4, so it
gets matched to the next item, y.

For the rare occasions where it is desirable to assign a value to local variable within a
function argument (generally not a good programming practice), simply enclose the assign-
ment in parentheses. For example, given the definition of £ in the previous example,

Chapter 6: Programming 67

int x;

write(f(4, (x=3)));

is equivalent to the statements
int x;

x=3;

write(£(4,3));

and outputs 43.

Parameters can be specified as “keyword-only” by putting keyword immediately before
the parameter name, as in int f (int keyword x) or int f (int keyword x=77). This forces
the caller of the function to use a named argument to give a value for this parameter. That
is, £ (x=42) is legal, but £ (25) is not. Keyword-only parameters must be listed after normal
parameters in a function definition.

As a technical detail, we point out that, since variables of the same name but different
signatures are allowed in the same scope, the code

int f(int x, int xQO) {
return x+x();
}

int seven() {return 7;}

is legal in Asymptote, with f(2,seven) returning 9. A named argument matches the
first unmatched formal of the same name, so f(x=2,x=seven) is an equivalent call, but
f (x=seven,2) is not, as the first argument is matched to the first formal, and int ()
cannot be implicitly cast to int. Default arguments do not affect which formal a named
argument is matched to, so if £ were defined as

int f(int x=3, int x()) {
return x+x();

}

then f (x=seven) would be illegal, even though f (seven) obviously would be allowed.

6.11.3 Rest arguments
Rest arguments allow one to write functions that take a variable number of arguments:

// This function sums its arguments.
int sum(... int[] nums) {
int total=0;
for(int i=0; i < nums.length; ++i)
total += nums[i];
return total;

}
sum(1,2,3,4); // returns 10
sum() ; // returns 0

// This function subtracts subsequent arguments from the first.
int subtract(int start ... int[] subs) {
for(int i=0; i < subs.length; ++i)

Chapter 6: Programming 68

start -= subs[i];
return start;
}
subtract(10,1,2); // returns 7
subtract (10) ; // returns 10
subtract(); // illegal

Putting an argument into a rest array is called packing. One can give an explicit list of
arguments for the rest argument, so subtract could alternatively be implemented as

int subtract(int start ... int[] subs) {
return start - sum(... subs);

}

One can even combine normal arguments with rest arguments:
sum(1,2,3 ... new int[] {4,5,6}); // returns 21

This builds a new six-element array that is passed to sum as nums. The opposite operation,
unpacking, is not allowed:

subtract(... new int[] {10, 1, 2});
is illegal, as the start formal is not matched.

If no arguments are packed, then a zero-length array (as opposed to null) is bound to
the rest parameter. Note that default arguments are ignored for rest formals and the rest
argument is not bound to a keyword.

In some cases, keyword-only parameters are helpful to avoid arguments intended for the
rest parameter to be assigned to other parameters. For example, here the use of keyword
is to avoid pnorm(1.0,2.0,0.3) matching 1.0 to p.

real pnorm(real keyword p=2.0 ... reall] v)
{

return sum(v'p)~(1/p);
}

The overloading resolution in Asymptote is similar to the function matching rules used
in C++. Every argument match is given a score. Exact matches score better than matches
with casting, and matches with formals (regardless of casting) score better than packing an
argument into the rest array. A candidate is maximal if all of the arguments score as well
in it as with any other candidate. If there is one unique maximal candidate, it is chosen;
otherwise, there is an ambiguity error.

int f(path g);
int f(guide g);
£((0,0)--(100,100)); // matches the second; the argument is a guide

int g(int x, real y);
int g(real x, int x);

g(3,4); // ambiguous; the first candidate is better for the first argument,
// but the second candidate is better for the second argument

Chapter 6: Programming 69

int h(... int[] rest);
int h(real x ... int[] rest);

h(1,2); // the second definition matches, even though there is a cast,
// because casting is preferred over packing

int i(int x ... int[] rest);
int i(real x, real y ... int[] rest);

i(3,4); // ambiguous; the first candidate is better for the first argument,
// but the second candidate is better for the second one

6.11.4 Mathematical functions

Asymptote has built-in versions of the standard 1ibm mathematical real(real) functions
sin, cos, tan, asin, acos, atan, exp, log, powlO, loglO, sinh, cosh, tanh, asinh,
acosh, atanh, sqrt, cbrt, fabs, expml, loglp, as well as the identity function identity.
Asymptote also defines the order n Bessel functions of the first kind Jn(int n, real) and
second kind Yn(int n, real), as well as the gamma function gamma, the error function erf,
and the complementary error function erfc. The standard real(real, real) functions atan2,
hypot, fmod, remainder are also included.

The functions degrees(real radians) and radians(real degrees) can be used to
convert between radians and degrees. The function Degrees(real radians) returns the
angle in degrees in the interval [0,360). For convenience, Asymptote defines variants Sin,
Cos, Tan, aSin, aCos, and aTan of the standard trigonometric functions that use degrees
rather than radians. We also define complex versions of the sqrt, sin, cos, exp, log, and
gamma functions.

The functions floor, ceil, and round differ from their usual definitions in that they
all return an int value rather than a real (since that is normally what one wants). The
functions Floor, Ceil, and Round are respectively similar, except that if the result cannot
be converted to a valid int, they return intMax for positive arguments and intMin for
negative arguments, rather than generating an integer overflow. We also define a function
sgn, which returns the sign of its real argument as an integer (-1, 0, or 1).

There is an abs(int) function, as well as an abs(real) function (equivalent to
fabs(real)), an abs(pair) function (equivalent to length(pair)).

Random numbers can be seeded with srand(int) and generated with the int rand()
function, which returns a random integer between 0 and the integer randMax. The
unitrand() function returns a random number uniformly distributed in the interval [0,1].
A Gaussian random number generator Gaussrand and a collection of statistics routines,
including histogram, are provided in the module stats. The functions factorial(int
n), which returns n!, and choose(int n, int k), which returns n!/(k!(n — k)!), are also
defined.

When configured with the GNU Scientific Library (GSL), available from https://
www.gnu.org/software/gsl/, Asymptote contains an internal module gsl that
defines the airy functions Ai(real), Bi(real), Ai_deriv(real), Bi_deriv(real),
zero_Ai(int), zero_Bi(int), zero_Ai_deriv(int), zero_Bi_deriv(int), the Bessel
functions I(int, real), K(int, real), j(int, real), y(int, real), i_scaled(int,

https://www.gnu.org/software/gsl/
https://www.gnu.org/software/gsl/

Chapter 6: Programming 70

real), k_scaled(int, real), J(real, real), Y(real, real), I(real, real), K(real,
real), zero_J(real, int), the elliptic functions F(real, real), E(real, real),
and P(real, real), the Jacobi elliptic functions real[] sncndn(real,real), the
exponential /trigonometric integrals Ei, Si, and Ci, the Legendre polynomials P1(int,
real), and the Riemann zeta function zeta(real). For example, to compute the sine
integral Si of 1.0:

import gsl;
write(Si(1.0));

Asymptote also provides a few general purpose numerical routines:

real newton(int iterations=100, real f(real), real fprime(real), real x,
bool verbose=false);
Use Newton-Raphson iteration to solve for a root of a real-valued differentiable
function f, given its derivative fprime and an initial guess x. Diagnostics
for each iteration are printed if verbose=true. If the iteration fails after the
maximum allowed number of loops (iterations), realMax is returned.

real newton(int iterations=100, real f(real), real fprime(real), real x1,
real x2, bool verbose=false);
Use bracketed Newton-Raphson bisection to solve for a root of a real-valued
differentiable function f within an interval [x1,x2] (on which the endpoint values
of £ have opposite signs), given its derivative fprime. Diagnostics for each
iteration are printed if verbose=true. If the iteration fails after the maximum
allowed number of loops (iterations), realMax is returned.

real simpson(real f(real), real a, real b, real acc=realEpsilon, real
dxmax=b-a)
returns the integral of £ from a to b using adaptive Simpson integration.

6.12 Arrays

Appending [] to a built-in or user-defined type yields an array. The array element i of
an array A can be accessed as A[i]. By default, attempts to access or assign to an array
element using a negative index generates an error. Reading an array element with an index
beyond the length of the array also generates an error; however, assignment to an element
beyond the length of the array causes the array to be resized to accommodate the new
element. One can also index an array A with an integer array B: the array A[B] is formed
by indexing array A with successive elements of array B. A convenient Java-style shorthand
exists for iterating over all elements of an array; see [array iteration|, page 24.

The declaration
reall] A;

initializes A to be an empty (zero-length) array. Empty arrays should be distinguished from
null arrays. If we say

real[] A=null;

then A cannot be dereferenced at all (null arrays have no length and cannot be read from
or assigned to).

Chapter 6: Programming 71

Arrays can be explicitly initialized like this:
real[] A={0,1,2};

Array assignment in Asymptote does a shallow copy: only the pointer is copied (if one
copy if modified, the other will be too). The copy function listed below provides a deep
copy of an array.

Every array A of type T[] has the virtual members

e int length,

e bool cyclic,

e int[] keys,

e T push(T x),

e void append(T[] a),

e T popQ),

e void insert(int i ... T[] x),
e void delete(int i, int j=i),
e void delete(), and

e bool initialized(int n).

The member A.length evaluates to the length of the array. Setting A.cyclic=true
signifies that array indices should be reduced modulo the current array length. Reading
from or writing to a nonempty cyclic array never leads to out-of-bounds errors or array
resizing.

The member A.keys evaluates to an array of integers containing the indices of initialized
entries in the array in ascending order. Hence, for an array of length n with all entries
initialized, A.keys evaluates to {0,1,...,n-1}. A new keys array is produced each time
A keys is evaluated.

The functions A.push and A.append append their arguments onto the end of the array,
while A.insert(int i ... T[] x) inserts x into the array at index i. For convenience
A . push returns the pushed item. The function A.pop() pops and returns the last element,
while A.delete(int i, int j=i) deletes elements with indices in the range [i,j], shifting
the position of all higher-indexed elements down. If no arguments are given, A.delete()
provides a convenient way of deleting all elements of A. The routine A.initialized(int
n) can be used to examine whether the element at index n is initialized. Like all Asymptote
functions, push, append, pop, insert, delete, and initialized can be "pulled off" of the
array and used on their own. For example,

int[] A={1};

A .push(2); // A now contains {1,2%}.
A.append(4); // A now contains {1,2,1,2}.
int f(int)=A.push;

£(3); // A now contains {1,2,1,2,3}.
int g()=A.pop;

write(g()); // Outputs 3.

A.delete(0); // A now contains {2,1,2}.
A.delete(0,1); // A now contains {2}.

A.insert(1,3); // A now contains {2,3}.

Chapter 6: Programming 72

A.insert(1 ... A); // A now contains {2,2,3,3}
A.insert(2,4,5); // A now contains {2,2,4,5,3,3}.

The [] suffix can also appear after the variable name; this is sometimes convenient for
declaring a list of variables and arrays of the same type:

real a,Al[];
This declares a to be real and implicitly declares A to be of type reall].

In the following list of built-in array functions, T represents a generic type. Note that
the internal functions alias, array, copy, concat, sequence, map, and transpose, which
depend on type T[], are defined only after the first declaration of a variable of type T[].

new T[] returns a new empty array of type T[];

new T[] {list}
returns a new array of type T[] initialized with 1list (a comma delimited list
of elements);

new T[n] returns a new array of n elements of type T[]. These n array elements are
not initialized unless they are arrays themselves (in which case they are each
initialized to empty arrays);

T[] array(int n, T value, int depth=intMax)
returns an array consisting of n copies of value. If value is itself an array,
a deep copy of value is made for each entry. If depth is specified, this deep
copying only recurses to the specified number of levels;

int[] sequence(int n)
if n >= 1 returns the array {0,1,...,n-1} (otherwise returns a null array);

int[] sequence(int n, int m)
if m >= n returns an array {n,n+1,...,m} (otherwise returns a null array);

int[] sequence(int n, int m, int skip)
if m >= n returns an array {n,n+1,...,m} skipping by skip (otherwise returns
a null array);

T[] sequence(T £(int), int n)
if n >= 1 returns the sequence {f_i :i=0,1,...n-1} given a function T f (int)
and integer int n (otherwise returns a null array);

T[] map(T £(T), T[] a)
returns the array obtained by applying the function £ to each element
of the array a. This is equivalent to sequence(new T(int i) {return
f(alil);},a.length);

T2[] map(T2 £(T1), T1[] a)
constructed by running from mapArray(Src=T1, Dst=T2) access map;,
returns the array obtained by applying the function f to each element of the
array a,

int[] reverse(int n)
if n >= 1 returns the array {n-1,n-2,...,0} (otherwise returns a null array);

Chapter 6: Programming 73

int[] complement(int[] a, int n)
returns the complement of the integer array a in {0,1,2,...,n-1}, so that
b[complement (a,b.length)] yields the complement of b[al;

real[] uniform(real a, real b, int n)
if n >= 1 returns a uniform partition of [a,b] into n subintervals (otherwise
returns a null array);

int find(bool[] a, int n=1)
returns the index of the nth true value in the boolean array a or -1 if not found.
If n is negative, search backwards from the end of the array for the -nth value;

int[] findall(bool[] a)
returns the indices of all true values in the boolean array a;

int search(T[] a, T key)
For built-in ordered types T, searches a sorted array a of n elements for k,
returning the index i if a[i] <= key < a[i+1], -1 if key is less than all elements
of a, or n-1 if key is greater than or equal to the last element of a;

int search(T[] a, T key, bool less(T i, T j))
searches an array a sorted in ascending order such that element i precedes
element j if less(i,j) is true;

T[] copy(TI[] a)
returns a deep copy of the array a;

T[] concat(... T1[] a)
returns a new array formed by concatenating the given one-dimensional arrays
given as arguments;

bool alias(T[] a, T[] b)
returns true if the arrays a and b are identical;

T[] sort(T[] a)
For built-in ordered types T, returns a copy of a sorted in ascending order;

T[I[] sort(T[I[] a)
For built-in ordered types T, returns a copy of a with the rows sorted by the
first column, breaking ties with successively higher columns. For example:
string[J1[] a={{"bob","9"},{"alice","5"},{"pete"," 7"},
{"alice","4"}};
// Row sort (by column O, using column 1 to break ties):
write(sort(a));

produces

alice 4
alice 5
bob 9
pete 7

T[] sort(T[] a, bool less(T i, T j), bool stable=true)
returns a copy of a sorted in ascending order such that element i precedes
element j if less(i,j) is true, subject to (if stable is true) the stability

Chapter 6: Programming 74

constraint that the original order of elements i and j is preserved if less (i, j)
and less(j,i) are both false;

T[1[] transpose(T[][] a)
returns the transpose of a;

T 10 transpose(T[][1[] a, int[] perm)
returns the 3D transpose of a obtained by applying the permutation perm of
new int [1{0,1,2} to the indices of each entry;

T sum (T[] a)
for arithmetic types T, returns the sum of a. In the case where T is bool, the
number of true elements in a is returned;

Tmin(T[] a)
Tmin(T[]1[] a)
Tmin(T[I010] &

for built-in ordered types T, returns the minimum element of a;

T max (T[] a)
Tmax(T[][] a)
Tmax(T] a)

for built-in ordered types T, returns the maximum element of a;

T[] min(T[] a, T[] b)
for built-in ordered types T, and arrays a and b of the same length, returns an
array composed of the minimum of the corresponding elements of a and b;

T[] max(T[] a, T[] b)
for built-in ordered types T, and arrays a and b of the same length, returns an
array composed of the maximum of the corresponding elements of a and b;

pair[] pairs(reall] x, realll y);
for arrays x and y of the same length, returns the pair array sequence(new
pair(int i) {return (x[i],y[i]);},x.length);

pair([] fft(pair([] a, int sign=1)
returns the unnormalized Fast Fourier Transform of a (if the optional FFTW
package is installed), using the given sign. Here is a simple example:
int n=4;
pair[] f=sequence(n);
write(f);
pair[] g=fft(f,-1);
write();
write(g);
f=fft(g,1);
write();
write(£f/n);

pair[]1[] fft(pair[]1[] a, int sign=1)
returns the unnormalized two-dimensional Fourier transform of a using the
given sign;

Chapter 6: Programming 75

pair[J[1[] fft(pair[J[]1[] a, int sign=1)
returns the unnormalized three-dimensional Fourier transform of a using the
given sign;

realschur schur(reall][] a)

returns a struct realschur containing a unitary matrix U and a quasitriangular
matrix T such that a=U*T*transpose (U);

schur schur(pair[][] a)
returns a struct schur containing a unitary matrix U and a triangular matrix
T such that a=UxT*conj (transpose (U));

real dot(reall[] a, reall] b)
returns the dot product of the vectors a and b;

pair dot(pair[] a, pair[] b)
returns the complex dot product sum(a*conj (b)) of the vectors a and b;
real[] tridiagonal(reall] a, reall] b, reall] c, reall] £);

Solve the periodic tridiagonal problem Lx = f and return the solution x, where
f is an n vector and L is the n x n matrix

[b[0] c[o] al0]]
[al1] bl[1] c[1]]
[al2] bl[2] c[2]]
[.]
[cln-1] aln-1] b[n-1]]

For Dirichlet boundary conditions (denoted here by u[-1] and u[n]), replace
f£[0] by £[0]-a[0]Jul[-1] and f[n-1]-c[n-1]Ju[n]; then set a[0]=c[n-1]=0;

real[] solve(real[][] a, reall[] b, bool warn=true)
Solve the linear equation ax = b by LU decomposition and return the solution
x, where a is an n X n matrix and b is an array of length n. For example:

import math;

reall][] a={{1,-2,3,0},{4,-5,6,2},{-7,-8,10,5},{1,50,1,-2}};
reall[] b={7,19,33,3};

real[] x=solve(a,b);

write(a); write();

write(b); write();

write(x); write();

write(a*x);

If a is a singular matrix and warn is false, return an empty array. If the matrix

a is tridiagonal, the routine tridiagonal provides a more efficient algorithm
(see [tridiagonal], page 75);

real[][] solve(reall[]l[] a, reall[]l[] b, bool warn=true)
Solve the linear equation ax = b and return the solution z, where a is an n xn
matrix and b is an n X m matrix. If a is a singular matrix and warn is false,
return an empty matrix;

real[] [] identity(int n);
returns the n x n identity matrix;

Chapter 6: Programming 76

real[][] diagonal(... reall] a)
returns the diagonal matrix with diagonal entries given by a;

real[] [] inverse(real[][] a)
returns the inverse of a square matrix a;

real[] quadraticroots(real a, real b, real c);
This numerically robust solver returns the real roots of the quadratic equation
az? + bx + ¢ = 0, in ascending order. Multiple roots are listed separately;

pair[] quadraticroots(explicit pair a, explicit pair b, explicit pair c);
This numerically robust solver returns the complex roots of the quadratic equa-
tion az? + bx + ¢ = 0;

real[] cubicroots(real a, real b, real c, real d);
This numerically robust solver returns the real roots of the cubic equation
az® + bx?® + cx + d = 0. Multiple roots are listed separately.

Asymptote includes a full set of vectorized array instructions for arithmetic (including
self) and logical operations. These element-by-element instructions are implemented in C++
code for speed. Given
real[] a={1,2};
real[] b={3,2};
then a == b and a >= 2 both evaluate to the vector {false, true}. To test whether all
components of a and b agree, use the boolean function all(a ==b). One can also use
conditionals like (a >= 2) 7 a : b, which returns the array {3,2}, or write((a>=2) 7 a :
null, which returns the array {2}.

All of the standard built-in 1ibm functions of signature real (real) also take a real array
as an argument, effectively like an implicit call to map.

As with other built-in types, arrays of the basic data types can be read in by assignment.
In this example, the code
file fin=input("test.txt");
real[] A=fin;
reads real values into A until the end-of-file is reached (or an I/O error occurs).

The virtual members dimension, line, csv, word, and read of a file are useful for reading
arrays. For example, if line mode is set with file line(bool b=true), then reading will
stop once the end of the line is reached instead:
file fin=input("test.txt");
real[] A=fin.line();

Since string reads by default read up to the end of line anyway, line mode normally
has no effect on string array reads. However, there is a white-space delimiter mode for
reading strings, file word(bool b=true), which causes string reads to respect white-space
delimiters, instead of the default end-of-line delimiter:
file fin=input("test.txt").line() .word();
real[] A=fin;

Another useful mode is comma-separated-value mode, file csv(bool b=true), which
causes reads to respect comma delimiters:
file fin=input("test.txt").csv();

Chapter 6: Programming 77

real[] A=fin;
To restrict the number of values read, use the file dimension(int) function:

file fin=input("test.txt");
real[] A=fin.dimension(10);

This reads 10 values into A, unless end-of-file (or end-of-line in line mode) occurs first.
Attempting to read beyond the end of the file will produce a runtime error message. Speci-
fying a value of 0 for the integer limit is equivalent to the previous example of reading until
end-of-file (or end-of-line in line mode) is encountered.

Two- and three-dimensional arrays of the basic data types can be read in like this:

file fin=input("test.txt");
real[][] A=fin.dimension(2,3);
real[][][] B=fin.dimension(2,3,4);

Sometimes the array dimensions are stored with the data as integer fields at the beginning
of an array. Such 1, 2, or 3 dimensional arrays can be read in with the virtual member
functions read (1), read(2), or read(3), respectively:

file fin=input("test.txt");
real[] A=fin.read(1);
real[][] B=fin.read(2);
real[J[1[] C=fin.read(3);

One, two, and three-dimensional arrays of the basic data types can be output with the
functions write(file,T[]1), write(file, T[] []1), write(file, T[] [][1), respectively.

6.12.1 Slices

Asymptote allows a section of an array to be addressed as a slice using a Python-like syntax.
If A is an array, the expression A[m:n] returns a new array consisting of the elements of A
with indices from m up to but not including n. For example,

int[] x={0,1,2,3,4,5,6,7,8,9};
int[] y=x[2:6]; // y={2,3,4,53};
int[] z=x[5:10]; // z={5,6,7,8,9};

If the left index is omitted, it is taken be 0. If the right index is omitted it is taken to be
the length of the array. If both are omitted, the slice then goes from the start of the array
to the end, producing a non-cyclic deep copy of the array. For example:
int[] x={0,1,2,3,4,5,6,7,8,9};
int[] y=x[:4]; // y={0,1,2,3}
int[] z=x[5:1; // z={5,6,7,8,9}
int[] w=x[:1; // w={0,1,2,3,4,5,6,7,8,9}, distinct from array x.

If A is a non-cyclic array, it is illegal to use negative values for either of the indices.

If the indices exceed the length of the array, however, they are politely truncated to that
length.

For cyclic arrays, the slice A[m:n] still consists of the cells with indices in the set [m,n),
but now negative values and values beyond the length of the array are allowed. The indices
simply wrap around. For example:

int[] x={0,1,2,3,4,5,6,7,8,9};

Chapter 6: Programming 78

x.cyclic=true;
int[] y=x[8:15]; // y={8,9,0,1,2,3,4%}.
int[] z=x[-5:5); // =z={5,6,7,8,9,0,1,2,3,4}
int[] w=x[-3:171; // w={7,8,9,0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6}

Notice that with cyclic arrays, it is possible to include the same element of the original
array multiple times within a slice. Regardless of the original array, arrays produced by
slices are always non-cyclic.

b b b b

If the left and right indices of a slice are the same, the result is an empty array. If the
array being sliced is empty, the result is an empty array. Any slice with a left index greater
than its right index will yield an error.

Slices can also be assigned to, changing the value of the original array. If the array being
assigned to the slice has a different length than the slice itself, elements will be inserted or
removed from the array to accommodate it. For instance:
string[] toppings={"mayo", "salt", "ham", "lettuce"};
toppings[0:2]=new string[] {"mustard", "pepper"};

// Now toppings={"mustard", "pepper", "ham", "lettuce"}
toppings[2:3]=new string[] {"turkey", "bacon" };

// Now toppings={"mustard", "pepper", "turkey", "bacon", "lettuce"}
toppings[0:3]=new string[] {"tomato"};

// Now toppings={"tomato", "bacon", "lettuce"}

If an array is assigned to a slice of itself, a copy of the original array is assigned to the
slice. That is, code such as x[m:n]=x is equivalent to x[m:n]=copy(x). One can use the
shorthand x[m:m]=y to insert the contents of the array y into the array x starting at the
location just before x [m].

For a cyclic array, a slice is bridging if it addresses cells up to the end of the array and
then continues on to address cells at the start of the array. For instance, if A is a cyclic array
of length 10, A[8:12], A[-3:1], and A[5:25] are bridging slices whereas A[3:7], A[7:10],
A[-3:0] and A[103:107] are not. Bridging slices can only be assigned to if the number
of elements in the slice is exactly equal to the number of elements we are assigning to it.
Otherwise, there is no clear way to decide which of the new entries should be A[0] and an
error is reported. Non-bridging slices may be assigned an array of any length.

For a cyclic array A an expression of the form A[A.length:A.length] is equivalent to
the expression A[0:0] and so assigning to this slice will insert values at the start of the
array. A.append() can be used to insert values at the end of the array.

It is illegal to assign to a slice of a cyclic array that repeats any of the cells.

6.13 Casts

Asymptote implicitly casts int to real, int to pair, real to pair, pair to path, pair
to guide, path to guide, guide to path, real to pen, pair[] to guidel], pair[] to
path[], path to path[], and guide to path[], along with various three-dimensional casts
defined in module three. Implicit casts are automatically attempted on assignment and
when trying to match function calls with possible function signatures. Implicit casting can
be inhibited by declaring individual arguments explicit in the function signature, say to
avoid an ambiguous function call in the following example, which outputs O:

int f(pair a) {return 0;}

Chapter 6: Programming 79

int f(explicit real x) {return 1;}

write(£(0));
Other conversions, say real to int or real to string, require an explicit cast:

int i=(int) 2.5;
string s=(string) 2.5;

real[] a={2.5,-3.5};
int[] b=(int []1) a;
write(stdout,b); // Outputs 2,-3

In situations where casting from a string to a type T fails, an uninitialized variable is
returned; this condition can be detected with the function bool initialized(T);

int i=(int) "2.5";
assert(initialized(i),"Invalid cast.");

real x=(real) "2.5a";
assert(initialized(x),"Invalid cast.");

Casting to user-defined types is also possible using operator cast:

struct rpair {
real radius;
real angle;

}

pair operator cast(rpair x) {
return (x.radius*cos(x.angle),x.radius*sin(x.angle));

}

rpair x;

x.radius=1;

x.angle=pi/6;

write(x); // Outputs (0.866025403784439,0.5)

One must use care when defining new cast operators. Suppose that in some code one
wants all integers to represent multiples of 100. To convert them to reals, one would first
want to multiply them by 100. However, the straightforward implementation

real operator cast(int x) {return xx100;3}

is equivalent to an infinite recursion, since the result x*100 needs itself to be cast from an
integer to a real. Instead, we want to use the standard conversion of int to real:

real convert(int x) {return x*100;}
real operator cast(int x)=convert;

Explicit casts are implemented similarly, with operator ecast.

Chapter 6: Programming 80

6.14 Import

While Asymptote provides many features by default, some applications require specialized
features contained in external Asymptote modules. For instance, the lines

access graph;

graph.axes();

draw x and y axes on a two-dimensional graph. Here, the command looks up the module
under the name graph in a global dictionary of modules and puts it in a new variable named
graph. The module is a structure, and we can refer to its fields as we usually would with a
structure.

Often, one wants to use module functions without having to specify the module name.
The code

from graph access axes;

adds the axes field of graph into the local name space, so that subsequently, one can just
write axes (). If the given name is overloaded, all types and variables of that name are
added. To add more than one name, just use a comma-separated list:

from graph access axes, xaxis, yaxis;

Wild card notation can be used to add all non-private fields and types of a module to the
local name space:

from graph access *;

Similarly, one can add the non-private fields and types of a structure to the local envi-
ronment with the unravel keyword:

struct matrix {
real a,b,c,d;

¥

real det(matrix m) {
unravel m;
return axd-bx*c;

}

Alternatively, one can unravel selective fields:
real det(matrix m) {

from m unravel a,b,c as C,d;

return a*xd-bx*C;

}

The command
import graph;

is a convenient abbreviation for the commands
access graph;
unravel graph;

That is, import graph first loads a module into a structure called graph and then adds
its non-private fields and types to the local environment. This way, if a member variable
(or function) is overwritten with a local variable (or function of the same signature), the
original one can still be accessed by qualifying it with the module name.

Chapter 6: Programming 81

Wild card importing will work fine in most cases, but one does not usually know all of the
internal types and variables of a module, which can also change as the module writer adds
or changes features of the module. As such, it is prudent to add import commands at the
start of an Asymptote file, so that imported names won’t shadow locally defined functions.
Still, imported names may shadow other imported names, depending on the order in which
they were imported, and imported functions may cause overloading resolution problems if
they have the same name as local functions defined later.

To rename modules or fields when adding them to the local environment, use as:

access graph as graph2d;
from graph access xaxis as xline, yaxis as yline;

The command
import graph as graph2d;
is a convenient abbreviation for the commands

access graph as graph2d;
unravel graph2d;

Except for a few built-in modules, such as settings, all modules are implemented as
Asymptote files. When looking up a module that has not yet been loaded, Asymptote
searches the standard search paths (see Section 2.5 [Search paths], page 6) for the matching
file. The file corresponding to that name is read and the code within it is interpreted as the
body of a structure defining the module.

If the file name contains nonalphanumeric characters, enclose it with quotation marks:
access "/opt/local/share/asymptote/graph.asy" as graph;
from "/opt/local/share/asymptote/graph.asy" access axes;
import "/opt/local/share/asymptote/graph.asy" as graph;

If Asymptote is compiled with support for 1ibcurl, the file name can even be a URL:
import "https://raw.githubusercontent.com/vectorgraphics/asymptote/HEAD/doc/axis3.asy"
as axis3;

It is an error if modules import themselves (or each other in a cycle). The module name
to be imported must be known at compile time.

However, you can import an Asymptote module determined by the string s at runtime
like this:

eval ("import "+s,true);
To conditionally execute an array of asy files, use
void asy(string format, bool overwrite ... stringl[] s);

The file will only be processed, using output format format, if overwrite is true or the
output file is missing.

One can evaluate an Asymptote expression (without any return value, however) con-
tained in the string s with:

void eval(string s, bool embedded=false);

It is not necessary to terminate the string s with a semicolon. If embedded is true, the
string will be evaluated at the top level of the current environment. If embedded is false

Chapter 6: Programming 82

(the default), the string will be evaluated in an independent environment, sharing the same
settings module (see [settings], page 171).

One can evaluate arbitrary Asymptote code (which may contain unescaped quotation
marks) with the command
void eval(code s, bool embedded=false);

Here code is a special type used with quote {} to enclose Asymptote code like this:
real a=1;
code s=quote {

write(a);
s
eval (s,true); // Outputs 1

To include the contents of an existing file graph verbatim (as if the contents of the file
were inserted at that point), use one of the forms:

include graph;
include "/opt/local/share/asymptote/graph.asy";

To list all global functions and variables defined in a module named by the contents of
the string s, use the function

void list(string s, bool imports=false);

Imported global functions and variables are also listed if imports is true.

6.14.1 Templated imports

Warning: This feature is experimental: it has known issues and its behavior may change in
the future.

In Asymptote, it is possible to create modules that must have one or more types specified
when they are imported. The first executable line of any such module must be of the
form typedef import(<types>), where <types> is a list of required type parameters. For
instance,

typedef import(T, S, Number);

could be the first line of a module that requires three type parameters. The remaining code
in the module can then use T, S, and Number as types.

To import such a module, one must specify the types to be used. For instance, if the
module above were named templatedModule, it could be accessed for types string, int[],
and real with the import command

access templatedModule(T=string, S=int[], Number=real)

as templatedModule_string_int_real;
Note that this is actually an access command rather than an import command, so the names
of types, functions, etc. would have to be stated as e.g. templatedModule_string_int_
real.Wrapper_Number rather than just Wrapper_Number (where Wrapper_Number is a type
defined in templatedModule.asy).

Alternatively, the module could be imported via a command like

from templatedModule(T=string, S=int[], Number=real) access
Wrapper_Number as Wrapper_real,
operator ==;

Chapter 6: Programming 83

This command would automatically rename Wrapper_Number to Wrapper_real and would
also allow the use of any operator == overloads defined in the module.

For more information, see the examples in https://github.com/vectorgraphics/
asymptote/tree/647b6c5732ec94a48f0f0b2446£02c86888fe7e7/tests/template.

Issues: Certain standard features of almost any type (such as ==, new, and the ability to
call static methods on the type) may only be available for type arguments that are builtin
or defined in the plain module.

6.15 Static

Static qualifiers allocate the memory address of a variable in a higher enclosing level.

F