
User Documentation for kinsol v4.1.0

(sundials v4.1.0)

Aaron M. Collier, Alan C. Hindmarsh, Radu Serban, and Carol S. Woodward
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

February 12, 2019

UCRL-SM-208116

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States government or Lawrence Livermore National Security, LLC. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Approved for public release; further dissemination unlimited

Contents

List of Tables vii

List of Figures ix

1 Introduction 1
1.1 Historical Background . 1
1.2 Changes from previous versions . 2
1.3 Reading this User Guide . 10
1.4 SUNDIALS Release License . 11

1.4.1 BSD 3-Clause License . 11
1.4.2 Additional Notice . 11
1.4.3 SUNDIALS Release Numbers . 12

2 Mathematical Considerations 13

3 Code Organization 21
3.1 SUNDIALS organization . 21
3.2 KINSOL organization . 21

4 Using KINSOL for C Applications 25
4.1 Access to library and header files . 25
4.2 Data types . 26

4.2.1 Floating point types . 26
4.2.2 Integer types used for vector and matrix indices 26

4.3 Header files . 27
4.4 A skeleton of the user’s main program . 28
4.5 User-callable functions . 30

4.5.1 KINSOL initialization and deallocation functions 30
4.5.2 Linear solver specification function . 31
4.5.3 KINSOL solver function . 33
4.5.4 Optional input functions . 34

4.5.4.1 Main solver optional input functions 36
4.5.4.2 Linear solver interface optional input functions 44

4.5.5 Optional output functions . 46
4.5.5.1 SUNDIALS version information . 46
4.5.5.2 Main solver optional output functions 47
4.5.5.3 kinls linear solver interface optional output functions 49

4.6 User-supplied functions . 53
4.6.1 Problem-defining function . 53
4.6.2 Error message handler function . 54
4.6.3 Informational message handler function . 54
4.6.4 Jacobian construction (matrix-based linear solvers) 54
4.6.5 Jacobian-vector product (matrix-free linear solvers) 56

iii

4.6.6 Preconditioner solve (iterative linear solvers) 57
4.6.7 Preconditioner setup (iterative linear solvers) 58

4.7 A parallel band-block-diagonal preconditioner module 58

5 FKINSOL, an Interface Module for FORTRAN Applications 63
5.1 Important note on portability . 63
5.2 Fortran Data Types . 63
5.3 FKINSOL routines . 64
5.4 Usage of the FKINSOL interface module . 65
5.5 FKINSOL optional input and output . 71
5.6 Usage of the FKINBBD interface to KINBBDPRE . 71

6 Description of the NVECTOR module 75
6.1 NVECTOR functions used by KINSOL . 84
6.2 The NVECTOR SERIAL implementation . 85

6.2.1 NVECTOR SERIAL accessor macros . 86
6.2.2 NVECTOR SERIAL functions . 86
6.2.3 NVECTOR SERIAL Fortran interfaces . 90

6.3 The NVECTOR PARALLEL implementation . 90
6.3.1 NVECTOR PARALLEL accessor macros . 90
6.3.2 NVECTOR PARALLEL functions . 91
6.3.3 NVECTOR PARALLEL Fortran interfaces . 95

6.4 The NVECTOR OPENMP implementation . 95
6.4.1 NVECTOR OPENMP accessor macros . 95
6.4.2 NVECTOR OPENMP functions . 96
6.4.3 NVECTOR OPENMP Fortran interfaces . 99

6.5 The NVECTOR PTHREADS implementation . 100
6.5.1 NVECTOR PTHREADS accessor macros . 100
6.5.2 NVECTOR PTHREADS functions . 101
6.5.3 NVECTOR PTHREADS Fortran interfaces . 104

6.6 The NVECTOR PARHYP implementation . 105
6.6.1 NVECTOR PARHYP functions . 105

6.7 The NVECTOR PETSC implementation . 108
6.7.1 NVECTOR PETSC functions . 109

6.8 The NVECTOR CUDA implementation . 112
6.8.1 NVECTOR CUDA functions . 112

6.9 The NVECTOR RAJA implementation . 117
6.9.1 NVECTOR RAJA functions . 118

6.10 The NVECTOR OPENMPDEV implementation . 122
6.10.1 NVECTOR OPENMPDEV accessor macros . 122
6.10.2 NVECTOR OPENMPDEV functions . 123

6.11 The NVECTOR TRILINOS implementation . 126
6.12 NVECTOR Examples . 127

7 Description of the SUNMatrix module 131
7.1 SUNMatrix functions used by KINSOL . 134
7.2 The SUNMatrix Dense implementation . 134

7.2.1 SUNMatrix Dense accessor macros . 135
7.2.2 SUNMatrix Dense functions . 136
7.2.3 SUNMatrix Dense Fortran interfaces . 137

7.3 The SUNMatrix Band implementation . 138
7.3.1 SUNMatrix Band accessor macros . 140
7.3.2 SUNMatrix Band functions . 141
7.3.3 SUNMatrix Band Fortran interfaces . 143

iv

7.4 The SUNMatrix Sparse implementation . 144
7.4.1 SUNMatrix Sparse accessor macros . 147
7.4.2 SUNMatrix Sparse functions . 148
7.4.3 SUNMatrix Sparse Fortran interfaces . 150

8 Description of the SUNLinearSolver module 153
8.1 The SUNLinearSolver API . 154

8.1.1 SUNLinearSolver core functions . 154
8.1.2 SUNLinearSolver set functions . 156
8.1.3 SUNLinearSolver get functions . 157
8.1.4 Functions provided by sundials packages . 158
8.1.5 SUNLinearSolver return codes . 159
8.1.6 The generic SUNLinearSolver module . 160

8.2 Compatibility of SUNLinearSolver modules . 161
8.3 Implementing a custom SUNLinearSolver module . 161

8.3.1 Intended use cases . 162
8.4 KINSOL SUNLinearSolver interface . 163

8.4.1 Lagged matrix information . 164
8.4.2 Iterative linear solver tolerance . 164

8.5 The SUNLinearSolver Dense implementation . 165
8.5.1 SUNLinearSolver Dense description . 165
8.5.2 SUNLinearSolver Dense functions . 166
8.5.3 SUNLinearSolver Dense Fortran interfaces . 166
8.5.4 SUNLinearSolver Dense content . 167

8.6 The SUNLinearSolver Band implementation . 168
8.6.1 SUNLinearSolver Band description . 168
8.6.2 SUNLinearSolver Band functions . 168
8.6.3 SUNLinearSolver Band Fortran interfaces . 169
8.6.4 SUNLinearSolver Band content . 170

8.7 The SUNLinearSolver LapackDense implementation 170
8.7.1 SUNLinearSolver LapackDense description . 171
8.7.2 SUNLinearSolver LapackDense functions . 171
8.7.3 SUNLinearSolver LapackDense Fortran interfaces 172
8.7.4 SUNLinearSolver LapackDense content . 172

8.8 The SUNLinearSolver LapackBand implementation . 173
8.8.1 SUNLinearSolver LapackBand description . 173
8.8.2 SUNLinearSolver LapackBand functions . 173
8.8.3 SUNLinearSolver LapackBand Fortran interfaces 174
8.8.4 SUNLinearSolver LapackBand content . 175

8.9 The SUNLinearSolver KLU implementation . 175
8.9.1 SUNLinearSolver KLU description . 175
8.9.2 SUNLinearSolver KLU functions . 176
8.9.3 SUNLinearSolver KLU Fortran interfaces . 178
8.9.4 SUNLinearSolver KLU content . 180

8.10 The SUNLinearSolver SuperLUMT implementation . 181
8.10.1 SUNLinearSolver SuperLUMT description . 181
8.10.2 SUNLinearSolver SuperLUMT functions . 181
8.10.3 SUNLinearSolver SuperLUMT Fortran interfaces 183
8.10.4 SUNLinearSolver SuperLUMT content . 184

8.11 The SUNLinearSolver SPGMR implementation . 185
8.11.1 SUNLinearSolver SPGMR description . 185
8.11.2 SUNLinearSolver SPGMR functions . 185
8.11.3 SUNLinearSolver SPGMR Fortran interfaces 188
8.11.4 SUNLinearSolver SPGMR content . 190

v

8.12 The SUNLinearSolver SPFGMR implementation . 191
8.12.1 SUNLinearSolver SPFGMR description . 192
8.12.2 SUNLinearSolver SPFGMR functions . 192
8.12.3 SUNLinearSolver SPFGMR Fortran interfaces 194
8.12.4 SUNLinearSolver SPFGMR content . 197

8.13 The SUNLinearSolver SPBCGS implementation . 198
8.13.1 SUNLinearSolver SPBCGS description . 198
8.13.2 SUNLinearSolver SPBCGS functions . 198
8.13.3 SUNLinearSolver SPBCGS Fortran interfaces 200
8.13.4 SUNLinearSolver SPBCGS content . 202

8.14 The SUNLinearSolver SPTFQMR implementation . 203
8.14.1 SUNLinearSolver SPTFQMR description . 203
8.14.2 SUNLinearSolver SPTFQMR functions . 204
8.14.3 SUNLinearSolver SPTFQMR Fortran interfaces 205
8.14.4 SUNLinearSolver SPTFQMR content . 208

8.15 The SUNLinearSolver PCG implementation . 209
8.15.1 SUNLinearSolver PCG description . 209
8.15.2 SUNLinearSolver PCG functions . 210
8.15.3 SUNLinearSolver PCG Fortran interfaces . 212
8.15.4 SUNLinearSolver PCG content . 214

8.16 SUNLinearSolver Examples . 214

A SUNDIALS Package Installation Procedure 217
A.1 CMake-based installation . 218

A.1.1 Configuring, building, and installing on Unix-like systems 218
A.1.2 Configuration options (Unix/Linux) . 220
A.1.3 Configuration examples . 227
A.1.4 Working with external Libraries . 228
A.1.5 Testing the build and installation . 230

A.2 Building and Running Examples . 230
A.3 Configuring, building, and installing on Windows . 231
A.4 Installed libraries and exported header files . 231

B KINSOL Constants 239
B.1 KINSOL input constants . 239
B.2 KINSOL output constants . 239

Bibliography 241

Index 243

vi

List of Tables

4.1 sundials linear solver interfaces and vector implementations that can be used for each. 30
4.2 Optional inputs for kinsol and kinls . 35
4.3 Optional outputs from kinsol and kinls . 47

5.1 Keys for setting fkinsol optional inputs . 71
5.2 Description of the fkinsol optional output arrays IOUT and ROUT 72

6.1 Vector Identifications associated with vector kernels supplied with sundials. 77
6.2 Description of the NVECTOR operations . 78
6.3 Description of the NVECTOR fused operations . 81
6.4 Description of the NVECTOR vector array operations 82
6.5 List of vector functions usage by kinsol code modules 85

7.1 Identifiers associated with matrix kernels supplied with sundials. 132
7.2 Description of the SUNMatrix operations . 132
7.3 sundials matrix interfaces and vector implementations that can be used for each. . . 133
7.4 List of matrix functions usage by kinsol code modules 134

8.1 Description of the SUNLinearSolver error codes . 160
8.2 sundials matrix-based linear solvers and matrix implementations that can be used for

each. 161
8.3 List of linear solver function usage in the kinls interface 164

A.1 sundials libraries and header files . 233

vii

List of Figures

3.1 High-level diagram of the sundials suite . 22
3.2 Organization of the sundials suite . 23
3.3 Overall structure diagram of the KINSOL package . 24

7.1 Diagram of the storage for a sunmatrix band object 139
7.2 Diagram of the storage for a compressed-sparse-column matrix 146

A.1 Initial ccmake configuration screen . 219
A.2 Changing the instdir . 220

ix

Chapter 1

Introduction

kinsol is part of a software family called sundials: SUite of Nonlinear and DIfferential/ALgebraic
equation Solvers [17]. This suite consists of cvode, arkode, kinsol, and ida, and variants of these
with sensitivity analysis capabilities.

kinsol is a general-purpose nonlinear system solver based on Newton-Krylov solver technology.
A fixed point iteration is also included with the release of kinsol v.2.8.0 and higher.

1.1 Historical Background

The first nonlinear solver packages based on Newton-Krylov methods were written in Fortran. In
particular, the NKSOL package, written at LLNL, was the first Newton-Krylov solver package written
for solution of systems arising in the solution of partial differential equations [6]. This Fortran code
made use of Newton’s method to solve the discrete nonlinear systems and applied a preconditioned
Krylov linear solver for solution of the Jacobian system at each nonlinear iteration. The key to the
Newton-Krylov method was that the matrix-vector multiplies required by the Krylov method could
effectively be approximated by a finite difference of the nonlinear system-defining function, avoiding a
requirement for the formation of the actual Jacobian matrix. Significantly less memory was required
for the solver as a result.

In the late 1990’s, there was a push at LLNL to rewrite the nonlinear solver in C and port it to
distributed memory parallel machines. Both Newton and Krylov methods are easily implemented in
parallel, and this effort gave rise to the kinsol package. kinsol is similar to NKSOL in functionality,
except that it provides for more options in the choice of linear system methods and tolerances, and
has a more modular design to provide flexibility for future enhancements.

At present, kinsol may utilize a variety of Krylov methods provided in sundials. These methods
include the GMRES (Generalized Minimal RESidual) [26], FGMRES (Flexible Generalized Minimum
RESidual) [25], Bi-CGStab (Bi-Conjugate Gradient Stabilized) [27], TFQMR (Transpose-Free Quasi-
Minimal Residual) [15], and PCG (Preconditioned Conjugate Gradient) [16] linear iterative methods.
As Krylov methods, these require little matrix storage for solving the Newton equations as compared
to direct methods. However, the algorithms allow for a user-supplied preconditioner matrix, and, for
most problems, preconditioning is essential for an efficient solution. For very large nonlinear algebraic
systems, the Krylov methods are preferable over direct linear solver methods, and are often the only
feasible choice. Among the Krylov methods in sundials, we recommend GMRES as the best overall
choice. However, users are encouraged to compare all three, especially if encountering convergence
failures with GMRES. Bi-CGStab and TFQMR have an advantage in storage requirements, in that
the number of workspace vectors they require is fixed, while that number for GMRES depends on
the desired Krylov subspace size. FGMRES has an advantage in that it is designed to support
preconditioners that vary between iterations (e.g. iterative methods). PCG exhibits rapid convergence
and minimal workspace vectors, but only works for symmetric linear systems.

For the sake of completeness in functionality, direct linear system solvers are included in kinsol.
These include methods for both dense and banded linear systems, with Jacobians that are either

2 Introduction

user-supplied or generated internally by difference quotients. kinsol also includes interfaces to the
sparse direct solvers KLU [9, 1], and the threaded sparse direct solver, SuperLU MT [21, 11, 2].

In the process of translating NKSOL into C, the overall kinsol organization has been changed
considerably. One key feature of the kinsol organization is that a separate module devoted to
vector operations was created. This module facilitated extension to multiprosessor environments with
minimal impact on the rest of the solver. The vector module design is shared across the sundials
suite. This nvector module is written in terms of abstract vector operations with the actual routines
attached by a particular implementation (such as serial or parallel) of nvector. This abstraction
allows writing the sundials solvers in a manner independent of the actual nvector implementation
(which can be user-supplied), as well as allowing more than one nvector module linked into an
executable file. sundials (and thus kinsol) is supplied with serial, MPI-parallel, and both OpenMP
and Pthreads thread-parallel nvector implementations.

There are several motivations for choosing the C language for kinsol. First, a general movement
away from Fortran and toward C in scientific computing was apparent. Second, the pointer, struc-
ture, and dynamic memory allocation features in C are extremely useful in software of this complexity,
with the great variety of method options offered. Finally, we prefer C over C++ for kinsol because
of the wider availability of C compilers, the potentially greater efficiency of C, and the greater ease
of interfacing the solver to applications written in Fortran.

1.2 Changes from previous versions

Changes in v4.1.0

An additional nvector implementation was added for the Tpetra vector from the Trilinos library
to facilitate interoperability between sundials and Trilinos. This implementation is accompanied by
additions to user documentation and sundials examples.

The EXAMPLES ENABLE RAJA CMake option has been removed. The option EXAMPLES ENABLE CUDA

enables all examples that use CUDA including the RAJA examples with a CUDA back end (if the
RAJA nvector is enabled).

The implementation header file kin impl.h is no longer installed. This means users who are
directly manipulating the KINMem structure will need to update their code to use kinsol’s public
API.

Python is no longer required to run make test and make test install.

Changes in v4.0.2

Added information on how to contribute to sundials and a contributing agreement.
Moved definitions of DLS and SPILS backwards compatibility functions to a source file. The

symbols are now included in the kinsol library, libsundials kinsol.

Changes in v4.0.1

No changes were made in this release.

Changes in v4.0.0

kinsol’s previous direct and iterative linear solver interfaces, kindls and kinspils, have been merged
into a single unified linear solver interface, kinls, to support any valid sunlinsol module. This
includes the “DIRECT” and “ITERATIVE” types as well as the new “MATRIX ITERATIVE” type.
Details regarding how kinls utilizes linear solvers of each type as well as discussion regarding intended
use cases for user-supplied sunlinsol implementations are included in Chapter 8. All kinsol example
programs and the standalone linear solver examples have been updated to use the unified linear solver
interface.

1.2 Changes from previous versions 3

The unified interface for the new kinls module is very similar to the previous kindls and kinspils
interfaces. To minimize challenges in user migration to the new names, the previous C and Fortran
routine names may still be used; these will be deprecated in future releases, so we recommend that
users migrate to the new names soon. Additionally, we note that Fortran users, however, may need
to enlarge their iout array of optional integer outputs, and update the indices that they query for
certain linear-solver-related statistics.

The names of all constructor routines for sundials-provided sunlinsol implementations have
been updated to follow the naming convention SUNLinSol * where * is the name of the linear solver.
The new names are SUNLinSol Band, SUNLinSol Dense, SUNLinSol KLU, SUNLinSol LapackBand,
SUNLinSol LapackDense, SUNLinSol PCG, SUNLinSol SPBCGS, SUNLinSol SPFGMR, SUNLinSol SPGMR,
SUNLinSol SPTFQMR, and SUNLinSol SuperLUMT. Solver-specific “set” routine names have been simi-
larly standardized. To minimize challenges in user migration to the new names, the previous routine
names may still be used; these will be deprecated in future releases, so we recommend that users mi-
grate to the new names soon. All kinsol example programs and the standalone linear solver examples
have been updated to use the new naming convention.

The SUNBandMatrix constructor has been simplified to remove the storage upper bandwidth ar-
gument.

Three fused vector operations and seven vector array operations have been added to the nvec-
tor API. These optional operations are disabled by default and may be activated by calling vector
specific routines after creating an nvector (see Chapter 6 for more details). The new operations are
intended to increase data reuse in vector operations, reduce parallel communication on distributed
memory systems, and lower the number of kernel launches on systems with accelerators. The fused op-
erations are N VLinearCombination, N VScaleAddMulti, and N VDotProdMulti and the vector array
operations are N VLinearCombinationVectorArray, N VScaleVectorArray, N VConstVectorArray,
N VWrmsNormVectorArray, N VWrmsNormMaskVectorArray, N VScaleAddMultiVectorArray, and
N VLinearCombinationVectorArray. If an nvector implementation defines any of these operations
as NULL, then standard nvector operations will automatically be called as necessary to complete the
computation.

Multiple updates to nvector cuda were made:

• Changed N VGetLength Cuda to return the global vector length instead of the local vector length.

• Added N VGetLocalLength Cuda to return the local vector length.

• Added N VGetMPIComm Cuda to return the MPI communicator used.

• Removed the accessor functions in the namespace suncudavec.

• Changed the N VMake Cuda function to take a host data pointer and a device data pointer instead
of an N VectorContent Cuda object.

• Added the ability to set the cudaStream t used for execution of the nvector cuda kernels.
See the function N VSetCudaStreams Cuda.

• Added N VNewManaged Cuda, N VMakeManaged Cuda, and N VIsManagedMemory Cuda functions
to accommodate using managed memory with the nvector cuda.

Multiple changes to nvector raja were made:

• Changed N VGetLength Raja to return the global vector length instead of the local vector length.

• Added N VGetLocalLength Raja to return the local vector length.

• Added N VGetMPIComm Raja to return the MPI communicator used.

• Removed the accessor functions in the namespace suncudavec.

A new nvector implementation for leveraging OpenMP 4.5+ device offloading has been added,
nvector openmpdev. See §6.10 for more details.

4 Introduction

Changes in v3.2.1

The changes in this minor release include the following:

• Fixed a bug in the cuda nvector where the N VInvTest operation could write beyond the
allocated vector data.

• Fixed library installation path for multiarch systems. This fix changes the default library instal-
lation path to CMAKE INSTALL PREFIX/CMAKE INSTALL LIBDIR from CMAKE INSTALL PREFIX/lib.
CMAKE INSTALL LIBDIR is automatically set, but is available as a CMake option that can modi-
fied.

Changes in v3.2.0

Fixed a problem with setting sunindextype which would occur with some compilers (e.g. armclang)
that did not define STDC VERSION .

Added hybrid MPI/CUDA and MPI/RAJA vectors to allow use of more than one MPI rank when
using a GPU system. The vectors assume one GPU device per MPI rank.

Changed the name of the raja nvector library to libsundials nveccudaraja.lib from
libsundials nvecraja.lib to better reflect that we only support cuda as a backend for raja cur-
rently.

Several changes were made to the build system:

• CMake 3.1.3 is now the minimum required CMake version.

• Deprecate the behavior of the SUNDIALS INDEX TYPE CMake option and added the
SUNDIALS INDEX SIZE CMake option to select the sunindextype integer size.

• The native CMake FindMPI module is now used to locate an MPI installation.

• If MPI is enabled and MPI compiler wrappers are not set, the build system will check if
CMAKE <language> COMPILER can compile MPI programs before trying to locate and use an
MPI installation.

• The previous options for setting MPI compiler wrappers and the executable for running MPI
programs have been have been depreated. The new options that align with those used in native
CMake FindMPI module are MPI C COMPILER, MPI CXX COMPILER, MPI Fortran COMPILER, and
MPIEXEC EXECUTABLE.

• When a Fortran name-mangling scheme is needed (e.g., LAPACK ENABLE is ON) the build system
will infer the scheme from the Fortran compiler. If a Fortran compiler is not available or the in-
ferred or default scheme needs to be overridden, the advanced options SUNDIALS F77 FUNC CASE

and SUNDIALS F77 FUNC UNDERSCORES can be used to manually set the name-mangling scheme
and bypass trying to infer the scheme.

• Parts of the main CMakeLists.txt file were moved to new files in the src and example directories
to make the CMake configuration file structure more modular.

Changes in v3.1.2

The changes in this minor release include the following:

• Updated the minimum required version of CMake to 2.8.12 and enabled using rpath by default
to locate shared libraries on OSX.

1.2 Changes from previous versions 5

• Fixed Windows specific problem where sunindextype was not correctly defined when using
64-bit integers for the sundials index type. On Windows sunindextype is now defined as the
MSVC basic type int64.

• Added sparse SUNMatrix “Reallocate” routine to allow specification of the nonzero storage.

• Updated the KLU SUNLinearSolver module to set constants for the two reinitialization types,
and fixed a bug in the full reinitialization approach where the sparse SUNMatrix pointer would
go out of scope on some architectures.

• Updated the “ScaleAdd” and “ScaleAddI” implementations in the sparse SUNMatrix module
to more optimally handle the case where the target matrix contained sufficient storage for the
sum, but had the wrong sparsity pattern. The sum now occurs in-place, by performing the sum
backwards in the existing storage. However, it is still more efficient if the user-supplied Jacobian
routine allocates storage for the sum I + γJ manually (with zero entries if needed).

• Changed the LICENSE install path to instdir/include/sundials.

Changes in v3.1.1

The changes in this minor release include the following:

• Fixed a potential memory leak in the spgmr and spfgmr linear solvers: if “Initialize” was
called multiple times then the solver memory was reallocated (without being freed).

• Updated KLU SUNLinearSolver module to use a typedef for the precision-specific solve function
to be used (to avoid compiler warnings).

• Added missing typecasts for some (void*) pointers (again, to avoid compiler warnings).

• Bugfix in sunmatrix sparse.c where we had used int instead of sunindextype in one location.

• Fixed a minor bug in KINPrintInfo where a case was missing for KIN REPTD SYSFUNC ERR

leading to an undefined info message.

• Added missing #include <stdio.h> in nvector and sunmatrix header files.

• Fixed an indexing bug in the cuda nvector implementation of N VWrmsNormMask and revised
the raja nvector implementation of N VWrmsNormMask to work with mask arrays using values
other than zero or one. Replaced double with realtype in the raja vector test functions.

• Fixed compilation issue with GCC 7.3.0 and Fortran programs that do not require a sunmatrix
or sunlinsol module (e.g., iterative linear solvers or fixed pointer solver).

In addition to the changes above, minor corrections were also made to the example programs, build
system, and user documentation.

Changes in v3.1.0

Added nvector print functions that write vector data to a specified file (e.g., N VPrintFile Serial).

Added make test and make test install options to the build system for testing sundials after
building with make and installing with make install respectively.

6 Introduction

Changes in v3.0.0

All interfaces to matrix structures and linear solvers have been reworked, and all example programs
have been updated. The goal of the redesign of these interfaces was to provide more encapsulation
and ease in the interfacing of custom linear solvers and interoperability with linear solver libraries.
Specific changes include:

• Added generic SUNMATRIX module with three provided implementations: dense, banded and
sparse. These replicate previous SUNDIALS Dls and Sls matrix structures in a single object-
oriented API.

• Added example problems demonstrating use of generic SUNMATRIX modules.

• Added generic SUNLinearSolver module with eleven provided implementations: sundials na-
tive dense, sundials native banded, LAPACK dense, LAPACK band, KLU, SuperLU MT,
SPGMR, SPBCGS, SPTFQMR, SPFGMR, and PCG. These replicate previous SUNDIALS
generic linear solvers in a single object-oriented API.

• Added example problems demonstrating use of generic SUNLINEARSOLVER modules.

• Expanded package-provided direct linear solver (Dls) interfaces and scaled, preconditioned, iter-
ative linear solver (Spils) interfaces to utilize generic SUNMATRIX and SUNLINEARSOLVER
objects.

• Removed package-specific, linear solver-specific, solver modules (e.g. CVDENSE, KINBAND,
IDAKLU, ARKSPGMR) since their functionality is entirely replicated by the generic Dls/Spils
interfaces and SUNLINEARSOLVER/SUNMATRIX modules. The exception is CVDIAG, a
diagonal approximate Jacobian solver available to CVODE and CVODES.

• Converted all SUNDIALS example problems to utilize new generic SUNMATRIX and SUNLIN-
EARSOLVER objects, along with updated Dls and Spils linear solver interfaces.

• Added Spils interface routines to ARKode, CVODE, CVODES, IDA and IDAS to allow spec-
ification of a user-provided ”JTSetup” routine. This change supports users who wish to set
up data structures for the user-provided Jacobian-times-vector (”JTimes”) routine, and where
the cost of one JTSetup setup per Newton iteration can be amortized between multiple JTimes
calls.

Two additional nvector implementations were added – one for cuda and one for raja vectors.
These vectors are supplied to provide very basic support for running on GPU architectures. Users are
advised that these vectors both move all data to the GPU device upon construction, and speedup will
only be realized if the user also conducts the right-hand-side function evaluation on the device. In
addition, these vectors assume the problem fits on one GPU. Further information about raja, users
are referred to th web site, https://software.llnl.gov/RAJA/. These additions are accompanied by
additions to various interface functions and to user documentation.

All indices for data structures were updated to a new sunindextype that can be configured to
be a 32- or 64-bit integer data index type. sunindextype is defined to be int32 t or int64 t when
portable types are supported, otherwise it is defined as int or long int. The Fortran interfaces
continue to use long int for indices, except for their sparse matrix interface that now uses the new
sunindextype. This new flexible capability for index types includes interfaces to PETSc, hypre,
SuperLU MT, and KLU with either 32-bit or 64-bit capabilities depending how the user configures
sundials.

To avoid potential namespace conflicts, the macros defining booleantype values TRUE and FALSE

have been changed to SUNTRUE and SUNFALSE respectively.
Temporary vectors were removed from preconditioner setup and solve routines for all packages. It

is assumed that all necessary data for user-provided preconditioner operations will be allocated and
stored in user-provided data structures.

1.2 Changes from previous versions 7

The file include/sundials fconfig.h was added. This file contains sundials type information
for use in Fortran programs.

The build system was expanded to support many of the xSDK-compliant keys. The xSDK is
a movement in scientific software to provide a foundation for the rapid and efficient production of
high-quality, sustainable extreme-scale scientific applications. More information can be found at,
https://xsdk.info.

Added functions SUNDIALSGetVersion and SUNDIALSGetVersionNumber to get sundials release
version information at runtime.

In addition, numerous changes were made to the build system. These include the addition of
separate BLAS ENABLE and BLAS LIBRARIES CMake variables, additional error checking during CMake
configuration, minor bug fixes, and renaming CMake options to enable/disable examples for greater
clarity and an added option to enable/disable Fortran 77 examples. These changes included changing
EXAMPLES ENABLE to EXAMPLES ENABLE C, changing CXX ENABLE to EXAMPLES ENABLE CXX, changing
F90 ENABLE to EXAMPLES ENABLE F90, and adding an EXAMPLES ENABLE F77 option.

A bug fix was done to correct the fcmix name translation for FKIN SPFGMR.
Corrections and additions were made to the examples, to installation-related files, and to the user

documentation.

Changes in v2.9.0

Two additional nvector implementations were added – one for Hypre (parallel) vectors, and one for
PETSc vectors. These additions are accompanied by additions to various interface functions and to
user documentation.

Each nvector module now includes a function, N VGetVectorID, that returns the nvector
module name.

The Picard iteration return was chanegd to always return the newest iterate upon success. A
minor bug in the line search was fixed to prevent an infinite loop when the beta condition fails and
lamba is below the minimum size.

For each linear solver, the various solver performance counters are now initialized to 0 in both the
solver specification function and in solver linit function. This ensures that these solver counters are
initialized upon linear solver instantiation as well as at the beginning of the problem solution.

A memory leak was fixed in the banded preconditioner interface. In addition, updates were done
to return integers from linear solver and preconditioner ’free’ functions.

Corrections were made to three Fortran interface functions. The Anderson acceleration scheme
was enhanced by use of QR updating.

The Krylov linear solver Bi-CGstab was enhanced by removing a redundant dot product. Various
additions and corrections were made to the interfaces to the sparse solvers KLU and SuperLU MT,
including support for CSR format when using KLU.

The functions FKINCREATE and FKININIT were added to split the FKINMALLOC routine into
two pieces. FKINMALLOC remains for backward compatibility, but documentation for it has been
removed.

A new examples was added for use of the OpenMP vector.
Minor corrections and additions were made to the kinsol solver, to the Fortran interfaces, to the

examples, to installation-related files, and to the user documentation.

Changes in v2.8.0

Two major additions were made to the globalization strategy options (KINSol argument strategy).
One is fixed-point iteration, and the other is Picard iteration. Both can be accelerated by use of the
Anderson acceleration method. See the relevant paragraphs in Chapter 2.

Three additions were made to the linear system solvers that are available for use with the kinsol
solver. First, in the serial case, an interface to the sparse direct solver KLU was added. Second,
an interface to SuperLU MT, the multi-threaded version of SuperLU, was added as a thread-parallel
sparse direct solver option, to be used with the serial version of the NVECTOR module. As part of

8 Introduction

these additions, a sparse matrix (CSC format) structure was added to kinsol. Finally, a variation of
GMRES called Flexible GMRES was added.

Otherwise, only relatively minor modifications were made to kinsol:

In function KINStop, two return values were corrected to make the values of uu and fval consistent.

A bug involving initialization of mxnewtstep was fixed. The error affects the case of repeated user
calls to KINSol with no intervening call to KINSetMaxNewtonStep.

A bug in the increments for difference quotient Jacobian approximations was fixed in function
kinDlsBandDQJac.

In KINLapackBand, the line smu = MIN(N-1,mu+ml) was changed to smu = mu + ml to correct an
illegal input error for DGBTRF/DGBTRS.

In order to avoid possible name conflicts, the mathematical macro and function names MIN, MAX,
SQR, RAbs, RSqrt, RExp, RPowerI, and RPowerR were changed to SUNMIN, SUNMAX, SUNSQR, SUNRabs,
SUNRsqrt, SUNRexp, SRpowerI, and SUNRpowerR, respectively. These names occur in both the solver
and in various example programs.

In the FKINSOL module, an incorrect return value ier in FKINfunc was fixed.

In the FKINSOL optional input routines FKINSETIIN, FKINSETRIN, and FKINSETVIN, the optional
fourth argument key length was removed, with hardcoded key string lengths passed to all strncmp
tests.

In all FKINSOL examples, integer declarations were revised so that those which must match a C
type long int are declared INTEGER*8, and a comment was added about the type match. All other
integer declarations are just INTEGER. Corresponding minor corrections were made to the user guide.

Two new nvector modules have been added for thread-parallel computing environments — one
for OpenMP, denoted NVECTOR OPENMP, and one for Pthreads, denoted NVECTOR PTHREADS.

With this version of sundials, support and documentation of the Autotools mode of installation
is being dropped, in favor of the CMake mode, which is considered more widely portable.

Changes in v2.7.0

One significant design change was made with this release: The problem size and its relatives, band-
width parameters, related internal indices, pivot arrays, and the optional output lsflag have all
been changed from type int to type long int, except for the problem size and bandwidths in user
calls to routines specifying BLAS/LAPACK routines for the dense/band linear solvers. The func-
tion NewIntArray is replaced by a pair NewIntArray/NewLintArray, for int and long int arrays,
respectively.

A large number of errors have been fixed. Three major logic bugs were fixed – involving updating
the solution vector, updating the linesearch parameter, and a missing error return. Three minor
errors were fixed – involving setting etachoice in the Matlab/kinsol interface, a missing error case
in KINPrintInfo, and avoiding an exponential overflow in the evaluation of omega. In each linear
solver interface function, the linear solver memory is freed on an error return, and the **Free function
now includes a line setting to NULL the main memory pointer to the linear solver memory. In the
installation files, we modified the treatment of the macro SUNDIALS USE GENERIC MATH, so that
the parameter GENERIC MATH LIB is either defined (with no value) or not defined.

Changes in v2.6.0

This release introduces a new linear solver module, based on BLAS and LAPACK for both dense and
banded matrices.

The user interface has been further refined. Some of the API changes involve: (a) a reorganization
of all linear solver modules into two families (besides the already present family of scaled precondi-
tioned iterative linear solvers, the direct solvers, including the new LAPACK-based ones, were also
organized into a direct family); (b) maintaining a single pointer to user data, optionally specified
through a Set-type function; (c) a general streamlining of the band-block-diagonal preconditioner
module distributed with the solver.

1.2 Changes from previous versions 9

Changes in v2.5.0

The main changes in this release involve a rearrangement of the entire sundials source tree (see §3.1).
At the user interface level, the main impact is in the mechanism of including sundials header files
which must now include the relative path (e.g. #include <cvode/cvode.h>). Additional changes
were made to the build system: all exported header files are now installed in separate subdirectories
of the installation include directory.

The functions in the generic dense linear solver (sundials dense and sundials smalldense) were
modified to work for rectangular m×n matrices (m ≤ n), while the factorization and solution functions
were renamed to DenseGETRF/denGETRF and DenseGETRS/denGETRS, respectively. The factorization
and solution functions in the generic band linear solver were renamed BandGBTRF and BandGBTRS,
respectively.

Changes in v2.4.0

kinspbcg, kinsptfqmr, kindense, and kinband modules have been added to interface with the
Scaled Preconditioned Bi-CGStab (spbcgs), Scaled Preconditioned Transpose-Free Quasi-Minimal
Residual (sptfqmr), dense, and band linear solver modules, respectively. (For details see Chapter
4.) Corresponding additions were made to the Fortran interface module fkinsol. At the same
time, function type names for Scaled Preconditioned Iterative Linear Solvers were added for the
user-supplied Jacobian-times-vector and preconditioner setup and solve functions.

Regarding the Fortran interface module fkinsol, optional inputs are now set using FKINSETIIN

(integer inputs), FKINSETRIN (real inputs), and FKINSETVIN (vector inputs). Optional outputs are
still obtained from the IOUT and ROUT arrays which are owned by the user and passed as arguments
to FKINMALLOC.

The kindense and kinband linear solver modules include support for nonlinear residual moni-
toring which can be used to control Jacobian updating.

To reduce the possibility of conflicts, the names of all header files have been changed by adding
unique prefixes (kinsol and sundials). When using the default installation procedure, the header
files are exported under various subdirectories of the target include directory. For more details see
Appendix A.

Changes in v2.3.0

The user interface has been further refined. Several functions used for setting optional inputs were
combined into a single one. Additionally, to resolve potential variable scope issues, all SUNDIALS
solvers release user data right after its use. The build system has been further improved to make it
more robust.

Changes in v2.2.1

The changes in this minor sundials release affect only the build system.

Changes in v2.2.0

The major changes from the previous version involve a redesign of the user interface across the entire
sundials suite. We have eliminated the mechanism of providing optional inputs and extracting
optional statistics from the solver through the iopt and ropt arrays. Instead, kinsol now provides a
set of routines (with prefix KINSet) to change the default values for various quantities controlling the
solver and a set of extraction routines (with prefix KINGet) to extract statistics after return from the
main solver routine. Similarly, each linear solver module provides its own set of Set- and Get-type
routines. For more details see Chapter 4.

Additionally, the interfaces to several user-supplied routines (such as those providing Jacobian-
vector products and preconditioner information) were simplified by reducing the number of arguments.

10 Introduction

The same information that was previously accessible through such arguments can now be obtained
through Get-type functions.

Installation of kinsol (and all of sundials) has been completely redesigned and is now based on
configure scripts.

1.3 Reading this User Guide

This user guide is a combination of general usage instructions and specific examples. We expect that
some readers will want to concentrate on the general instructions, while others will refer mostly to
the examples, and the organization is intended to accommodate both styles.

There are different possible levels of usage of kinsol. The most casual user, with a small nonlinear
system, can get by with reading all of Chapter 2, then Chapter 4 through §4.5.3 only, and looking
at examples in [8]. In a different direction, a more expert user with a nonlinear system may want to
(a) use a package preconditioner (§4.7), (b) supply his/her own Jacobian or preconditioner routines
(§4.6), (c) supply a new nvector module (Chapter 6), or even (d) supply a different linear solver
module (§3.2 and Chapter 8).

The structure of this document is as follows:

• In Chapter 2, we provide short descriptions of the numerical methods implemented by kinsol
for the solution of nonlinear systems.

• The following chapter describes the structure of the sundials suite of solvers (§3.1) and the
software organization of the kinsol solver (§3.2).

• Chapter 4 is the main usage document for kinsol for C applications. It includes a complete
description of the user interface for the solution of nonlinear algebraic systems.

• In Chapter 5, we describe fkinsol, an interface module for the use of kinsol with Fortran
applications.

• Chapter 6 gives a brief overview of the generic nvector module shared among the various
components of sundials, and details on the four nvector implementations provided with
sundials.

• Chapter 7 gives a brief overview of the generic sunmatrix module shared among the vari-
ous components of sundials, and details on the sunmatrix implementations provided with
sundials: a dense implementation (§7.2), a banded implementation (§7.3) and a sparse imple-
mentation (§7.4).

• Chapter 8 gives a brief overview of the generic sunlinsol module shared among the various
components of sundials. This chapter contains details on the sunlinsol implementations
provided with sundials. The chapter also contains details on the sunlinsol implementations
provided with sundials that interface with external linear solver libraries.

• Finally, in the appendices, we provide detailed instructions for the installation of kinsol, within
the structure of sundials (Appendix A), as well as a list of all the constants used for input to
and output from kinsol functions (Appendix B).

Finally, the reader should be aware of the following notational conventions in this user guide:
program listings and identifiers (such as KINInit) within textual explanations appear in typewriter
type style; fields in C structures (such as content) appear in italics; and packages or modules are
written in all capitals. Usage and installation instructions that constitute important warnings are
marked with a triangular symbol in the margin.!

Acknowledgments. We wish to acknowledge the contributions to previous versions of the kinsol
code and user guide by Allan G. Taylor.

1.4 SUNDIALS Release License 11

1.4 SUNDIALS Release License

All sundials packages are released open source, under the BSD 3-Clause license. The only require-
ments of the license are preservation of copyright and a standard disclaimer of liability. The full text
of the license and an additional notice are provided below and may also be found in the LICENSE
and NOTICE files provided with all sundials packages.

If you are using sundials with any third party libraries linked in (e.g., LAPACK, KLU, Su- !

perLU MT, petsc, or hypre), be sure to review the respective license of the package as that license
may have more restrictive terms than the sundials license. For example, if someone builds sundials
with a statically linked KLU, the build is subject to terms of the LGPL license (which is what KLU
is released with) and not the sundials BSD license anymore.

1.4.1 BSD 3-Clause License

Copyright (c) 2002-2019, Lawrence Livermore National Security and Southern Methodist University.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its contributors may be used to en-
dorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.4.2 Additional Notice

This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of the United States Govern-
ment. Neither the United States Government nor Lawrence Livermore National Security, LLC, nor
any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,

12 Introduction

or favoring by the United States Government or Lawrence Livermore National Security, LLC.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or Lawrence Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.

1.4.3 SUNDIALS Release Numbers

LLNL-CODE-667205 (ARKODE)

UCRL-CODE-155951 (CVODE)

UCRL-CODE-155950 (CVODES)

UCRL-CODE-155952 (IDA)

UCRL-CODE-237203 (IDAS)

LLNL-CODE-665877 (KINSOL)

Chapter 2

Mathematical Considerations

kinsol solves nonlinear algebraic systems in real N -space.
Using Newton’s method, or the Picard iteration, one can solve

F (u) = 0 , F : RN → RN , (2.1)

given an initial guess u0. Using a fixed-point iteration, the convergence of which can be improved
with Anderson acceleration, one can solve

G(u) = u , G : RN → RN , (2.2)

given an initial guess u0.

Basic Newton iteration

Depending on the linear solver used, kinsol can employ either an Inexact Newton method [4, 6, 10,
12, 20], or a Modified Newton method. At the highest level, kinsol implements the following iteration
scheme:

1. Set u0 = an initial guess

2. For n = 0, 1, 2, ... until convergence do:

(a) Solve J(un)δn = −F (un)

(b) Set un+1 = un + λδn, 0 < λ ≤ 1

(c) Test for convergence

Here, un is the nth iterate to u, and J(u) = F ′(u) is the system Jacobian. At each stage in the
iteration process, a scalar multiple of the step δn, is added to un to produce a new iterate, un+1. A
test for convergence is made before the iteration continues.

Newton method variants

For solving the linear system given in step (2a), kinsol provides several choices, including the option
of a user-supplied linear solver module. The linear solver modules distributed with sundials are
organized in two families, a direct family comprising direct linear solvers for dense, banded, or sparse
matrices and a spils family comprising scaled preconditioned iterative (Krylov) linear solvers. The
methods offered through these modules are as follows:

• dense direct solvers, using either an internal implementation or a BLAS/LAPACK implementa-
tion (serial or threaded vector modules only),

14 Mathematical Considerations

• band direct solvers, using either an internal implementation or a BLAS/LAPACK implementa-
tion (serial or threaded vector modules only),

• sparse direct solver interfaces, using either the KLU sparse solver library [9, 1], or the thread-
enabled SuperLU MT sparse solver library [21, 11, 2] (serial or threaded vector modules only)
[Note that users will need to download and install the klu or superlumt packages independent
of kinsol],

• spgmr, a scaled preconditioned GMRES (Generalized Minimal Residual method) solver,

• spfgmr, a scaled preconditioned FGMRES (Flexible Generalized Minimal Residual method)
solver,

• spbcgs, a scaled preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable method) solver,

• sptfqmr, a scaled preconditioned TFQMR (Transpose-Free Quasi-Minimal Residual method)
solver, or

• pcg, a scaled preconditioned CG (Conjugate Gradient method) solver.

When using a direct linear solver, the linear system in 2(a) is solved exactly, thus resulting in a
Modified Newton method (the Jacobian matrix is normally out of date; see below1). Note that the
dense, band, and sparse direct linear solvers can only be used with the serial and threaded vector
representations.

When using an iterative linear solver, the linear system in (2a) is solved only approximately,
thus resulting in an Inexact Newton method. Here right preconditioning is available by way of the
preconditioning setup and solve routines supplied by the user, in which case the iterative method is
applied to the linear systems (JP−1)(Pδ) = −F , where P denotes the right preconditioning matrix.

Additionally, it is possible for users to supply a matrix-based iterative linear solver to kinsol,
resulting in a Modified Inexact Newton method. As with the direct linear solvers, the Jacobian
matrix is updated infrequently; similarly as with iterative linear solvers the linear system is solved
only approximately.

Jacobian information update strategy

In general, unless specified otherwise by the user, kinsol strives to update Jacobian information (the
actual system Jacobian J in the case of matrix-based linear solvers, and the preconditioner matrix P
in the case of iterative linear solvers) as infrequently as possible to balance the high costs of matrix
operations against other costs. Specifically, these updates occur when:

• the problem is initialized,

• ‖λδn−1‖Du,∞ > 1.5 (Inexact Newton only),

• mbset= 10 nonlinear iterations have passed since the last update,

• the linear solver failed recoverably with outdated Jacobian information,

• the global strategy failed with outdated Jacobian information, or

• ‖λδn‖Du,∞ < steptol with outdated Jacobian or preconditioner information.

kinsol allows, through optional solver inputs, changes to the above strategy. Indeed, the user can
disable the initial Jacobian information evaluation or change the default value of mbset, the number
of nonlinear iterations after which a Jacobian information update is enforced.

1kinsol allows the user to enforce a Jacobian evaluation at each iteration thus allowing for an Exact Newton iteration.

15

Scaling

To address the case of ill-conditioned nonlinear systems, kinsol allows prescribing scaling factors both
for the solution vector and for the residual vector. For scaling to be used, the user should supply values
Du, which are diagonal elements of the scaling matrix such that Duun has all components roughly the
same magnitude when un is close to a solution, and DF , which are diagonal scaling matrix elements
such that DFF has all components roughly the same magnitude when un is not too close to a solution.
In the text below, we use the following scaled norms:

‖z‖Du
= ‖Duz‖2, ‖z‖DF

= ‖DF z‖2, ‖z‖Du,∞ = ‖Duz‖∞, and ‖z‖DF ,∞ = ‖DF z‖∞ (2.3)

where ‖ · ‖∞ is the max norm. When scaling values are provided for the solution vector, these values
are automatically incorporated into the calculation of the perturbations used for the default difference
quotient approximations for Jacobian information; see (2.7) and (2.9) below.

Globalization strategy

Two methods of applying a computed step δn to the previously computed solution vector are imple-
mented. The first and simplest is the standard Newton strategy which applies step 2(b) as above
with λ always set to 1. The other method is a global strategy, which attempts to use the direction
implied by δn in the most efficient way for furthering convergence of the nonlinear problem. This
technique is implemented in the second strategy, called Linesearch. This option employs both the
α and β conditions of the Goldstein-Armijo linesearch given in [12] for step 2(b), where λ is chosen
to guarantee a sufficient decrease in F relative to the step length as well as a minimum step length
relative to the initial rate of decrease of F . One property of the algorithm is that the full Newton
step tends to be taken close to the solution.

kinsol implements a backtracking algorithm to first find the value λ such that un + λδn satisfies
the sufficient decrease condition (or α-condition)

F (un + λδn) ≤ F (un) + α∇F (un)Tλδn ,

where α = 10−4. Although backtracking in itself guarantees that the step is not too small, kinsol
secondly relaxes λ to satisfy the so-called β-condition (equivalent to Wolfe’s curvature condition):

F (un + λδn) ≥ F (un) + β∇F (un)Tλδn ,

where β = 0.9. During this second phase, λ is allowed to vary in the interval [λmin, λmax] where

λmin =
steptol

‖δ̄n‖∞
, δ̄jn =

δjn

1/Dj
u + |uj |

,

and λmax corresponds to the maximum feasible step size at the current iteration (typically λmax =
stepmax/‖δn‖Du

). In the above expressions, vj denotes the jth component of a vector v.
For more details, the reader is referred to [12].

Nonlinear iteration stopping criteria

Stopping criteria for the Newton method are applied to both of the nonlinear residual and the step
length. For the former, the Newton iteration must pass a stopping test

‖F (un)‖DF ,∞ < ftol ,

where ftol is an input scalar tolerance with a default value of U1/3. Here U is the machine unit
roundoff. For the latter, the Newton method will terminate when the maximum scaled step is below
a given tolerance

‖λδn‖Du,∞ < steptol ,

where steptol is an input scalar tolerance with a default value of U2/3. Only the first condition
(small residual) is considered a successful completion of kinsol. The second condition (small step)
may indicate that the iteration is stalled near a point for which the residual is still unacceptable.

16 Mathematical Considerations

Additional constraints

As a user option, kinsol permits the application of inequality constraints, ui > 0 and ui < 0, as well
as ui ≥ 0 and ui ≤ 0, where ui is the ith component of u. Any such constraint, or no constraint, may
be imposed on each component. kinsol will reduce step lengths in order to ensure that no constraint
is violated. Specifically, if a new Newton iterate will violate a constraint, the maximum step length
along the Newton direction that will satisfy all constraints is found, and δn in Step 2(b) is scaled to
take a step of that length.

Residual monitoring for Modified Newton method

When using a matrix-based linear solver, in addition to the strategy described above for the update
of the Jacobian matrix, kinsol also provides an optional nonlinear residual monitoring scheme to
control when the system Jacobian is updated. Specifically, a Jacobian update will also occur when
mbsetsub= 5 nonlinear iterations have passed since the last update and

‖F (un)‖DF
> ω‖F (um)‖DF

,

where un is the current iterate and um is the iterate at the last Jacobian update. The scalar ω is
given by

ω = min
(
ωmin e

max(0,ρ−1), ωmax

)
, (2.4)

with ρ defined as

ρ =
‖F (un)‖DF

ftol
, (2.5)

where ftol is the input scalar tolerance discussed before. Optionally, a constant value ωconst can be
used for the parameter ω.

The constants controlling the nonlinear residual monitoring algorithm can be changed from their
default values through optional inputs to kinsol. These include the parameters ωmin and ωmax, the
constant value ωconst, and the threshold mbsetsub.

Stopping criteria for iterative linear solvers

When using an Inexact Newton method (i.e. when an iterative linear solver is used), the convergence
of the overall nonlinear solver is intimately coupled with the accuracy with which the linear solver in
2(a) above is solved. kinsol provides three options for stopping criteria for the linear system solver,
including the two algorithms of Eisenstat and Walker [13]. More precisely, the Krylov iteration must
pass a stopping test

‖Jδn + F‖DF
< (ηn + U)‖F‖DF

,

where ηn is one of:

Eisenstat and Walker Choice 1

ηn =
| ‖F (un)‖DF

− ‖F (un−1) + J(un−1)δn‖DF
|

‖F (un−1)‖DF

,

Eisenstat and Walker Choice 2

ηn = γ

(
‖F (un)‖DF

‖F (un−1)‖DF

)α
,

where default values of γ and α are 0.9 and 2, respectively.

Constant η
ηn = constant,

with 0.1 as the default.

The default strategy is ”Eisenstat and Walker Choice 1”. For both options 1 and 2, appropriate
safeguards are incorporated to ensure that η does not decrease too quickly [13].

17

Difference quotient Jacobian approximations

With the dense and banded matrix-based linear solvers, the Jacobian may be supplied by a user
routine, or approximated by difference quotients, at the user’s option. In the latter case, we use the
usual approximation

J ij = [F i(u+ σje
j)− F i(u)]/σj . (2.6)

The increments σj are given by

σj =
√
U max

{
|uj |, 1/Dj

u

}
. (2.7)

In the dense case, this scheme requires N evaluations of F , one for each column of J . In the band
case, the columns of J are computed in groups, by the Curtis-Powell-Reid algorithm, with the number
of F evaluations equal to the bandwidth. The parameter U above can (optionally) be replaced by a
user-specified value, relfunc.

We note that with sparse and user-supplied matrix-based linear solvers, the Jacobian must be
supplied by a user routine, i.e. it is not approximated internally within kinsol.

In the case of a matrix-free iterative linear solver, Jacobian information is needed only as matrix-
vector products Jv. If a routine for Jv is not supplied, these products are approximated by directional
difference quotients as

J(u)v ≈ [F (u+ σv)− F (u)]/σ , (2.8)

where u is the current approximation to a root of (2.1), and σ is a scalar. The choice of σ is taken
from [6] and is given by

σ =
max{|uT v|, uTtyp|v|}

‖v‖22
sign(uT v)

√
U , (2.9)

where utyp is a vector of typical values for the absolute values of the solution (and can be taken to be
inverses of the scale factors given for u as described below). This formula is suitable for scaled vectors
u and v, and so is applied to Duu and Duv. The parameter U above can (optionally) be replaced
by a user-specified value, relfunc. Convergence of the Newton method is maintained as long as the
value of σ remains appropriately small, as shown in [4].

Basic Fixed Point iteration

The basic fixed-point iteration scheme implemented in kinsol is given by:

1. Set u0 = an initial guess

2. For n = 0, 1, 2, ... until convergence do:

(a) Set un+1 = G(un).

(b) Test for convergence.

Here, un is the nth iterate to u. At each stage in the iteration process, function G is applied to the
current iterate to produce a new iterate, un+1. A test for convergence is made before the iteration
continues.

For Picard iteration, as implemented in kinsol, we consider a special form of the nonlinear function
F , such that F (u) = Lu − N(u), where L is a constant nonsingular matrix and N is (in general)
nonlinear. Then the fixed-point function G is defined as G(u) = u − L−1F (u). The Picard iteration
is given by:

1. Set u0 = an initial guess

2. For n = 0, 1, 2, ... until convergence do:

(a) Set un+1 = G(un) = un − L−1F (un).

(b) Test F (un+1) for convergence.

18 Mathematical Considerations

Here, un is the nth iterate to u. Within each iteration, the Picard step is computed then added to
un to produce the new iterate. Next, the nonlinear residual function is evaluated at the new iterate,
and convergence is checked. Noting that L−1N(u) = u−L−1F (u), the above iteration can be written
in the same form as a Newton iteration except that here, L is in the role of the Jacobian. Within
kinsol, however, we leave this in a fixed-point form as above. For more information, see p. 182 of
[23].

Anderson Acceleration

The Picard and fixed point methods can be significantly accelerated using Anderson’s method [3, 28,
14, 22]. Anderson acceleration can be formulated as follows:

1. Set u0 = an initial guess and m ≥ 1

2. Set u1 = G(u0)

3. For n = 0, 1, 2, ... until convergence do:

(a) Set mn = min{m,n}
(b) Set Fn = (fn−mn

, . . . , fn), where fi = G(ui)− ui

(c) Determine α(n) = (α
(n)
0 , . . . , α

(n)
mn) that solves minα ‖FnαT ‖2 such that

∑mn

i=0 αi = 1

(d) Set un+1 =
∑mn

i=0 α
(n)
i G(un−mn+i)

(e) Test for convergence

It has been implemented in kinsol by turning the constrained linear least-squares problem in Step
(c) into an unconstrained one leading to the algorithm given below:

1. Set u0 = an initial guess and m ≥ 1

2. Set u1 = G(u0)

3. For n = 0, 1, 2, ... until convergence do:

(a) Set mn = min{m,n}
(b) Set ∆Fn = (∆fn−mn

, . . . ,∆fn−1), where ∆fi = fi+1 − fi and fi = G(ui)− ui

(c) Determine γ(n) = (γ
(n)
0 , . . . , γ

(n)
mn−1) that solves minγ ‖fn −∆Fnγ

T ‖2

(d) Set un+1 = G(un)−
∑mn−1
i=0 γ

(n)
i ∆gn−mn+i with ∆gi = G(ui+1)−G(ui)

(e) Test for convergence

The least-squares problem in (c) is solved by applying a QR factorization to ∆Fn = QnRn and
solving Rnγ = QTnfn.

Fixed-point - Anderson Acceleration Stopping Criterion

The default stopping criterion is

‖G(un+1)− un+1‖DF ,∞ < gtol ,

where DF is a user-defined diagonal matrix that can be the identity or a scaling matrix chosen so
that the components of DF (G(u) − u) have roughly the same order of magnitude. Note that when
using Anderson acceleration, convergence is checked after the acceleration is applied.

19

Picard - Anderson Acceleration Stopping Criterion

The default stopping criterion is
‖F (un+1)‖DF ,∞ < ftol ,

where DF is a user-defined diagonal matrix that can be the identity or a scaling matrix chosen so
that the components of DFF (u) have roughly the same order of magnitude. Note that when using
Anderson acceleration, convergence is checked after the acceleration is applied.

Chapter 3

Code Organization

3.1 SUNDIALS organization

The family of solvers referred to as sundials consists of the solvers cvode and arkode (for ODE
systems), kinsol (for nonlinear algebraic systems), and ida (for differential-algebraic systems). In
addition, sundials also includes variants of cvode and ida with sensitivity analysis capabilities
(using either forward or adjoint methods), called cvodes and idas, respectively.

The various solvers of this family share many subordinate modules. For this reason, it is organized
as a family, with a directory structure that exploits that sharing (see Figs. 3.1 and 3.2). The following
is a list of the solver packages presently available, and the basic functionality of each:

• cvode, a solver for stiff and nonstiff ODE systems dy/dt = f(t, y) based on Adams and BDF
methods;

• cvodes, a solver for stiff and nonstiff ODE systems with sensitivity analysis capabilities;

• arkode, a solver for ODE systems Mdy/dt = fE(t, y)+fI(t, y) based on additive Runge-Kutta
methods;

• ida, a solver for differential-algebraic systems F (t, y, ẏ) = 0 based on BDF methods;

• idas, a solver for differential-algebraic systems with sensitivity analysis capabilities;

• kinsol, a solver for nonlinear algebraic systems F (u) = 0.

3.2 KINSOL organization

The kinsol package is written in the ANSI C language. This section summarizes the basic structure
of the package, although knowledge of this structure is not necessary for its use.

The overall organization of the kinsol package is shown in Figure 3.3. The central solver mod-
ule, implemented in the files kinsol.h, kinsol impl.h and kinsol.c, deals with the solution of a
nonlinear algebraic system using either an Inexact Newton method or a line search method for the
global strategy. Although this module contains logic for the Newton iteration, it has no knowledge of
the method used to solve the linear systems that arise. For any given user problem, one of the linear
system solver modules is specified, and is then invoked as needed.

kinsol now has a single unified linear solver interface, kinls, supporting both direct and iterative
linear solvers built using the generic sunlinsol API (see Chapter 8). These solvers may utilize a
sunmatrix object (see Chapter 7) for storing Jacobian information, or they may be matrix-free.
Since kinsol can operate on any valid sunlinsol implementation, the set of linear solver modules
available to kinsol will expand as new sunlinsol modules are developed.

For users employing dense or banded Jacobian matrices, kinls includes algorithms for their ap-
proximation through difference quotients, but the user also has the option of supplying the Jacobian

22 Code Organization

SUNDIALS

CVODE CVODES ARKODE IDAS KINSOLIDA

SUNMATRIX API

MATRIX MODULES

DENSE

BAND

SPARSE

Cut Here

SUNLINEARSOLVER API

LINEAR SOLVER MODULES

MATRIX-BASED

DENSE

SUPERLU_MT

BAND

KLU

LAPACK
DENSE

LAPACK
BAND

MATRIX-FREE

SPTFQMR

SPBCG

SPFGMR

PCG

SPGMR

SUNNONLINEARSOLVER API

NONLINEAR SOLVER MODULES

NEWTON

FIXED POINT

NVECTOR API

VECTOR MODULES

SERIAL PARALLEL
(MPI)

PTHREADSOPENMP

CUDA RAJA

PARHYP
(HYPRE) PETSC

MPI+CUDA MPI+RAJA

OPENMPDEV

Figure 3.1: High-level diagram of the sundials suite

(or an approximation to it) directly. This user-supplied routine is required when using sparse or
user-supplied Jacobian matrices.

For users employing matrix-free iterative linear solvers, kinls includes an algorithm for the approx-
imation by difference quotients of the product between the Jacobian matrix and a vector, Jv. Again,
the user has the option of providing routines for this operation, in two phases: setup (preprocessing
of Jacobian data) and multiplication.

For preconditioned iterative methods, the preconditioning must be supplied by the user, again
in two phases: setup and solve. While there is no default choice of preconditioner analogous to the
difference-quotient approximation in the direct case, the references [5, 7], together with the example
and demonstration programs included with kinsol, offer considerable assistance in building precon-
ditioners.

kinsol’s linear solver interface consists of four primary phases, devoted to (1) memory allocation
and initialization, (2) setup of the matrix data involved, (3) solution of the system, and (4) freeing
of memory. The setup and solution phases are separate because the evaluation of Jacobians and
preconditioners is done only periodically during the solution, as required to achieve convergence. The
call list within the central kinsol module to each of the associated functions is fixed, thus allowing
the central module to be completely independent of the linear system method.

kinsol also provides a preconditioner module called kinbbdpre for use with any of the Krylov
iterative linear solvers. It works in conjunction with nvector parallel and generates a precondi-
tioner that is a block-diagonal matrix with each block being a banded matrix, as further described in
§4.7.

All state information used by kinsol to solve a given problem is saved in a structure, and a pointer
to that structure is returned to the user. There is no global data in the kinsol package, and so, in this
respect, it is reentrant. State information specific to the linear solver is saved in a separate structure,
a pointer to which resides in the kinsol memory structure. The reentrancy of kinsol was motivated
by the anticipated multicomputer extension, but is also essential in a uniprocessor setting where two
or more problems are solved by intermixed calls to the package from within a single user program.

3.2 KINSOL organization 23

sundials-x.x.x

include src examples docconfig

Cut Here

test

cvode

cvodes

arkode

ida

idas

kinsol

sundials

nvector

sunmatrix

sunlinsol

sunnonlinsol nvec_*

sunmat_*

sunlinsol_*

cvode

cvodes

arkode

ida

idas

kinsol

sundials

fcmix

fcmix

fcmix

fcmix

sunnonlinsol

cvode

cvodes

arkode

ida

idas

kinsol

sundials

nvector

sunmatrix

sunlinsol

sunnonlinsol

F90

(a) Directory structure of the sundials source tree

sundials-x.x.x

Cut Here

sunlinsol

dense

band

lapackdense

lapackband

klu superlumt

spgmr spfgmr sptfqmr

spbcg pcg

sunmatrix

dense band sparse

examples

cvodes

serial parallel C_openmp

idas

serial parallel C_openmp

kinsol

serial parallel

fcmix_serial fcmix_parallel

C_openmp

sunnonlinsol

newton fixed point

cvode

serial parallel

parhyp cuda raja

C_openmp

fcmix_serial fcmix_parallel

C_openmpdev

F90_serial

arkode

C_serial C_parallel

CXX_serial CXX_parallel

F77_serial F77_parallel F90_serial F90_parallel

C_openmp

C_parhyp CXX_parhyp

C_openmpdev

ida

serial parallel

fcmix_serial fcmix_parallel

C_openmp

fcmix_opemp

petsc cuda raja

mpicuda mpiraja

nvector

serial parallel openmp

pthread

raja

cuda

parhyp

petsc mpicuda

mpiraja

openmpdev

(b) Directory structure of the sundials examples

Figure 3.2: Organization of the sundials suite

24 Code Organization

SUNMATRIX API

MATRIX
MODULES

DENSE

BAND

SPARSE

Cut Here

SUNLINEARSOLVER API

LINEAR SOLVER
MODULES

MATRIX-BASED

DENSE

SUPERLU_MT

BAND

KLU

LAPACK
DENSE

LAPACK
BAND

MATRIX-FREE

SPTFQMR

SPBCG

SPFGMR

PCG

SPGMR

KINSOLSUNDIALS

KINLS:
LINEAR SOLVER INTERFACE

PRECONDITIONER MODULES

KINBBDPRE KINBANDPRE

NVECTOR API

VECTOR
MODULES

SERIAL

PARALLEL (MPI)

PTHREADS

OPENMP

CUDA

RAJA

PARHYP (HYPRE)

PETSC

MPI+CUDA

MPI+RAJA

OPENMPDEV

Figure 3.3: Overall structure diagram of the kinsol package. Modules specific to kinsol are dis-
tinguished by rounded boxes, while generic solver and auxiliary modules are in rectangular boxes.
Grayed boxes refer to the encompassing sundials structure. Note also that the LAPACK, klu and
superlumt support is through interfaces to external packages. Users will need to download and
compile those packages independently.

Chapter 4

Using KINSOL for C Applications

This chapter is concerned with the use of kinsol for the solution of nonlinear systems. The following
subsections treat the header files, the layout of the user’s main program, description of the kinsol
user-callable routines, and user-supplied functions. The sample programs described in the companion
document [8] may also be helpful. Those codes may be used as templates (with the removal of some
lines involved in testing), and are included in the kinsol package.

Users with applications written in Fortran should see Chapter 5, which describes the For-
tran/C interface module.

The user should be aware that not all sunlinsol and sunmatrix modules are compatible with
all nvector implementations. Details on compatability are given in the documentation for each
sunmatrix module (Chapter 7) and each sunlinsol module (Chapter 8). For example, nvec-
tor parallel is not compatible with the dense, banded, or sparse sunmatrix types, or with the
corresponding dense, banded, or sparse sunlinsol modules. Please check Chapters 7 and 8 to verify
compatability between these modules. In addition to that documentation, we note that the precon-
ditioner module kinbbdpre can only be used with nvector parallel. It is not recommended to
use a threaded vector module with SuperLU MT unless it is the nvector openmp module, and
SuperLU MT is also compiled with OpenMP.

kinsol uses various constants for both input and output. These are defined as needed in this
chapter, but for convenience are also listed separately in Appendix B.

4.1 Access to library and header files

At this point, it is assumed that the installation of kinsol, following the procedure described in
Appendix A, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load
commands must make reference to the appropriate locations for the library and header files required
by kinsol. The relevant library files are

• libdir/libsundials kinsol.lib,

• libdir/libsundials nvec*.lib (one to four files),

where the file extension .lib is typically .so for shared libraries and .a for static libraries. The relevant
header files are located in the subdirectories

• incdir/include/kinsol

• incdir/include/sundials

• incdir/include/nvector

• incdir/include/sunmatrix

26 Using KINSOL for C Applications

• incdir/include/sunlinsol

The directories libdir and incdir are the install library and include directories, respectively. For a
default installation, these are builddir/lib and builddir/include, respectively, where builddir was
defined in Appendix A.

4.2 Data types

The sundials types.h file contains the definition of the type realtype, which is used by the sundials
solvers for all floating-point data, the definition of the integer type sunindextype, which is used
for vector and matrix indices, and booleantype, which is used for certain logic operations within
sundials.

4.2.1 Floating point types

The type realtype can be float, double, or long double, with the default being double. The user
can change the precision of the sundials solvers arithmetic at the configuration stage (see §A.1.2).

Additionally, based on the current precision, sundials types.h defines BIG REAL to be the largest
value representable as a realtype, SMALL REAL to be the smallest value representable as a realtype,
and UNIT ROUNDOFF to be the difference between 1.0 and the minimum realtype greater than 1.0.

Within sundials, real constants are set by way of a macro called RCONST. It is this macro that
needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant with no
suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes it a
float, whereas using the suffix “L” makes it a long double. For example,

#define A 1.0

#define B 1.0F

#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be
a long double constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if
realtype is double, to 1.0F if realtype is float, or to 1.0L if realtype is long double. sundials
uses the RCONST macro internally to declare all of its floating-point constants.

A user program which uses the type realtype and the RCONST macro to handle floating-point
constants is precision-independent except for any calls to precision-specific standard math library
functions. (Our example programs use both realtype and RCONST.) Users can, however, use the type
double, float, or long double in their code (assuming that this usage is consistent with the typedef
for realtype). Thus, a previously existing piece of ANSI C code can use sundials without modifying
the code to use realtype, so long as the sundials libraries use the correct precision (for details see
§A.1.2).

4.2.2 Integer types used for vector and matrix indices

The type sunindextype can be either a 32- or 64-bit signed integer. The default is the portable
int64 t type, and the user can change it to int32 t at the configuration stage. The configuration
system will detect if the compiler does not support portable types, and will replace int32 t and
int64 t with int and long int, respectively, to ensure use of the desired sizes on Linux, Mac OS X,
and Windows platforms. sundials currently does not support unsigned integer types for vector and
matrix indices, although these could be added in the future if there is sufficient demand.

A user program which uses sunindextype to handle vector and matrix indices will work with both
index storage types except for any calls to index storage-specific external libraries. (Our C and C++

example programs use sunindextype.) Users can, however, use any one of int, long int, int32 t,
int64 t or long long int in their code, assuming that this usage is consistent with the typedef
for sunindextype on their architecture). Thus, a previously existing piece of ANSI C code can use
sundials without modifying the code to use sunindextype, so long as the sundials libraries use the
appropriate index storage type (for details see §A.1.2).

4.3 Header files 27

4.3 Header files

The calling program must include several header files so that various macros and data types can be
used. The header file that is always required is:

• kinsol/kinsol.h, the header file for kinsol, which defines several types and various constants,
and includes function prototypes. This includes the header file for kinls, kinsol/kinsol ls.h.

kinsol.h also includes sundials types.h, which defines the types realtype, sunindextype, and
booleantype and constants SUNFALSE and SUNTRUE.

The calling program must also include an nvector implementation header file, of the form
nvector/nvector ***.h. See Chapter 6 for the appropriate name. This file in turn includes the
header file sundials nvector.h which defines the abstract N Vector data type.

If using a Newton or Picard nonlinear solver that requires the solution of a linear system, then
a linear solver module header file will be required. The header files corresponding to the various
sundials-provided linear solver modules available for use with kinsol are:

• Direct linear solvers:

– sunlinsol/sunlinsol dense.h, which is used with the dense linear solver module, sun-
linsol dense;

– sunlinsol/sunlinsol band.h, which is used with the banded linear solver module, sun-
linsol band;

– sunlinsol/sunlinsol lapackdense.h, which is used with the LAPACK package dense
linear solver module, sunlinsol lapackdense;

– sunlinsol/sunlinsol lapackband.h, which is used with the LAPACK package banded
linear solver module, sunlinsol lapackband;

– sunlinsol/sunlinsol klu.h, which is used with the klu sparse linear solver module,
sunlinsol klu;

– sunlinsol/sunlinsol superlumt.h, which is used with the superlumt sparse linear
solver module, sunlinsol superlumt;

• Iterative linear solvers:

– sunlinsol/sunlinsol spgmr.h, which is used with the scaled, preconditioned GMRES
Krylov linear solver module, sunlinsol spgmr;

– sunlinsol/sunlinsol spfgmr.h, which is used with the scaled, preconditioned FGMRES
Krylov linear solver module, sunlinsol spfgmr;

– sunlinsol/sunlinsol spbcgs.h, which is used with the scaled, preconditioned Bi-CGStab
Krylov linear solver module, sunlinsol spbcgs;

– sunlinsol/sunlinsol sptfqmr.h, which is used with the scaled, preconditioned TFQMR
Krylov linear solver module, sunlinsol sptfqmr;

– sunlinsol/sunlinsol pcg.h, which is used with the scaled, preconditioned CG Krylov
linear solver module, sunlinsol pcg;

The header files for the sunlinsol dense and sunlinsol lapackdense linear solver modules
include the file sunmatrix/sunmatrix dense.h, which defines the sunmatrix dense matrix module,
as as well as various functions and macros acting on such matrices.

The header files for the sunlinsol band and sunlinsol lapackband linear solver modules in-
clude the file sunmatrix/sunmatrix band.h, which defines the sunmatrix band matrix module, as
as well as various functions and macros acting on such matrices.

The header files for the sunlinsol klu and sunlinsol superlumt sparse linear solvers include
the file sunmatrix/sunmatrix sparse.h, which defines the sunmatrix sparse matrix module, as
well as various functions and macros acting on such matrices.

28 Using KINSOL for C Applications

The header files for the Krylov iterative solvers include the file sundials/sundials iterative.h,
which enumerates the kind of preconditioning, and (for the spgmr and spfgmr solvers) the choices
for the Gram-Schmidt process.

Other headers may be needed, according to the choice of preconditioner, etc. For example, in the
kinFoodWeb kry p example (see [8]), preconditioning is done with a block-diagonal matrix. For this,
even though the sunlinsol spgmr linear solver is used, the header sundials/sundials dense.h is
included for access to the underlying generic dense matrix arithmetic routines.

4.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the solution of a
nonlinear system problem. Most of the steps are independent of the nvector, sunmatrix, and
sunlinsol implementations used. For the steps that are not, refer to Chapter 6, 7, and 8 for the
specific name of the function to be called or macro to be referenced.

1. Initialize parallel or multi-threaded environment, if appropriate

For example, call MPI Init to initialize MPI if used, or set num threads, the number of threads
to use within the threaded vector functions, if used.

2. Set problem dimensions etc.

This generally includes the problem size N, and may include the local vector length Nlocal.

Note: The variables N and Nlocal should be of type sunindextype.

3. Set vector with initial guess

To set the vector u of initial guess values, use the appropriate functions defined by the particular
nvector implementation.

For native sundials vector implementations (except the cuda and raja-based ones), use a call
of the form u = N VMake ***(..., udata) if the realtype array udata containing the initial
values of u already exists. Otherwise, create a new vector by making a call of the form u =

N VNew ***(...), and then set its elements by accessing the underlying data with a call of the
form ydata = N VGetArrayPointer(u). See §6.2-6.5 for details.

For the hypre and petsc vector wrappers, first create and initialize the underlying vector and
then create an nvector wrapper with a call of the form u = N VMake ***(uvec), where uvec is
a hypre or petsc vector. Note that calls like N VNew ***(...) and N VGetArrayPointer(...)

are not available for these vector wrappers. See §6.6 and §6.7 for details.

If using either the cuda- or raja-based vector implementations use a call of the form u =

N VMake ***(..., c) where c is a pointer to a suncudavec or sunrajavec vector class if this class
already exists. Otherwise, create a new vector by making a call of the form u = N VNew ***(...),
and then set its elements by accessing the underlying data where it is located with a call of the
form N VGetDeviceArrayPointer *** or N VGetHostArrayPointer ***. Note that the vector
class will allocate memory on both the host and device when instantiated. See §6.8-6.9 for details.

4. Create kinsol object

Call kin mem = KINCreate() to create the kinsol memory block. KINCreate returns a pointer
to the kinsol memory structure. See §4.5.1 for details.

5. Allocate internal memory

Call KINInit(...) to specify the problem defining function F , allocate internal memory for
kinsol, and initialize kinsol. KINInit returns a flag to indicate success or an illegal argument
value. See §4.5.1 for details.

6. Create matrix object

4.4 A skeleton of the user’s main program 29

If a matrix-based linear solver is to be used within a Newton or Picard iteration, then a template
Jacobian matrix must be created by using the appropriate functions defined by the particular
sunmatrix implementation.

For the sundials-supplied sunmatrix implementations, the matrix object may be created using
a call of the form

SUNMatrix J = SUNBandMatrix(...);

or

SUNMatrix J = SUNDenseMatrix(...);

or

SUNMatrix J = SUNSparseMatrix(...);

NOTE: The dense, banded, and sparse matrix objects are usable only in a serial or threaded
environment.

7. Create linear solver object

If a Newton or Picard iteration is chosen, then the desired linear solver object must be created by
using the appropriate functions defined by the particular sunlinsol implementation.

For any of the sundials-supplied sunlinsol implementations, the linear solver object may be
created using a call of the form

SUNLinearSolver LS = SUNLinSol *(...);

where * can be replaced with “Dense”, “SPGMR”, or other options, as discussed in §4.5.2 and
Chapter 8.

8. Set linear solver optional inputs

Call *Set* functions from the selected linear solver module to change optional inputs specific to
that linear solver. See the documentation for each sunlinsol module in Chapter 8 for details.

9. Attach linear solver module

If a Newton or Picard iteration is chosen, initialize the kinls linear solver interface by attaching
the linear solver object (and matrix object, if applicable) with one of the following calls (for details
see §4.5.2):

ier = KINSetLinearSolver(...);

10. Set optional inputs

Call KINSet* routines to change from their default values any optional inputs that control the
behavior of kinsol. See §4.5.4 for details.

11. Solve problem

Call ier = KINSol(...) to solve the nonlinear problem for a given initial guess. See §4.5.3 for
details.

12. Get optional outputs

Call KINGet* functions to obtain optional output. See §4.5.5 for details.

13. Deallocate memory for solution vector

Upon completion of the solution, deallocate memory for the vector u by calling the appropriate
destructor function defined by the nvector implementation:

N VDestroy(u);

14. Free solver memory

30 Using KINSOL for C Applications

Call KINFree(&kin mem) to free the memory allocated for kinsol.

15. Free linear solver and matrix memory

Call SUNLinSolFree and SUNMatDestroy to free any memory allocated for the linear solver and
matrix objects created above.

16. Finalize MPI, if used

Call MPI Finalize() to terminate MPI.

sundials provides some linear solvers only as a means for users to get problems running and not
as highly efficient solvers. For example, if solving a dense system, we suggest using the LAPACK
solvers if the size of the linear system is > 50, 000. (Thanks to A. Nicolai for his testing and rec-
ommendation.) Table 4.1 shows the linear solver interfaces available as sunlinsol modules and the
vector implementations required for use. As an example, one cannot use the dense direct solver inter-
faces with the MPI-based vector implementation. However, as discussed in Chapter 8 the sundials
packages operate on generic sunlinsol objects, allowing a user to develop their own solvers should
they so desire.

Table 4.1: sundials linear solver interfaces and vector implementations that can be used for each.

Linear Solver S
er

ia
l

P
ar

al
le

l
(M

P
I)

O
p

en
M

P

p
T

h
re

ad
s

h
y
p
re

p
e
t
sc

c
u
d
a

r
a
ja

U
se

r
S

u
p

p
.

Dense X X X X
Band X X X X

LapackDense X X X X
LapackBand X X X X

klu X X X X
superlumt X X X X

spgmr X X X X X X X X X
spfgmr X X X X X X X X X
spbcgs X X X X X X X X X

sptfqmr X X X X X X X X X
pcg X X X X X X X X X

User Supp. X X X X X X X X X

4.5 User-callable functions

This section describes the kinsol functions that are called by the user to set up and solve a nonlinear
problem. Some of these are required. However, starting with §4.5.4, the functions listed involve
optional inputs/outputs or restarting, and those paragraphs can be skipped for a casual use of kinsol.
In any case, refer to §4.4 for the correct order of these calls.

The return flag (when present) for each of these routines is a negative integer if an error occurred,
and non-negative otherwise.

4.5.1 KINSOL initialization and deallocation functions

The following three functions must be called in the order listed. The last one is to be called only after
the problem solution is complete, as it frees the kinsol memory block created and allocated by the
first two calls.

4.5 User-callable functions 31

KINCreate

Call kin mem = KINCreate();

Description The function KINCreate instantiates a kinsol solver object.

Arguments This function has no arguments.

Return value If successful, KINCreate returns a pointer to the newly created kinsol memory block
(of type void *). If an error occurred, KINCreate prints an error message to stderr

and returns NULL.

KINInit

Call flag = KINInit(kin mem, func, tmpl);

Description The function KINInit specifies the problem-defining function, allocates internal mem-
ory, and initializes kinsol.

Arguments kin mem (void *) pointer to the kinsol memory block returned by KINCreate.

func (KINSysFn) is the C function which computes the system function F (or G(u)
for fixed-point iteration) in the nonlinear problem. This function has the form
func(u, fval, user data). (For full details see §4.6.1.)

tmpl (N Vector) is any N Vector (e.g. the initial guess vector u) which is used as a
template to create (by cloning) necessary vectors in kin mem.

Return value The return value flag (of type int) will be one of the following:

KIN SUCCESS The call to KINInit was successful.

KIN MEM NULL The kinsol memory block was not initialized through a previous call
to KINCreate.

KIN MEM FAIL A memory allocation request has failed.

KIN ILL INPUT An input argument to KINInit has an illegal value.

Notes If an error occurred, KINInit sends an error message to the error handler function.

KINFree

Call KINFree(&kin mem);

Description The function KINFree frees the memory allocated by a previous call to KINCreate.

Arguments The argument is the address of the pointer to the kinsol memory block returned by
KINCreate (of type void *).

Return value The function KINFree has no return value.

4.5.2 Linear solver specification function

As previously explained, Newton and Picard iterations require the solution of linear systems of the
form Jδ = −F . Solution of these linear systems is handled using the kinls linear solver interface.
This interface supports all valid sunlinsol modules. Here, matrix-based sunlinsol modules utilize
sunmatrix objects to store the Jacobian matrix J = ∂F/∂u and factorizations used throughout the
solution process. Conversely, matrix-free sunlinsol modules instead use iterative methods to solve
the linear systems of equations, and only require the action of the Jacobian on a vector, Jv.

With most iterative linear solvers, preconditioning can be done on the left only, on the right only,
on both the left and the right, or not at all. However, only right preconditioning is supported within
kinls. If preconditioning is done, user-supplied functions define the linear operator corresponding
to a right preconditioner matrix P , which should approximate the system Jacobian matrix J . For
the specification of a preconditioner, see the iterative linear solver sections in §4.5.4 and §4.6. A
preconditioner matrix P must approximate the Jacobian J , at least crudely.

32 Using KINSOL for C Applications

To specify a generic linear solver to kinsol, after the call to KINCreate but before any calls
to KINSol, the user’s program must create the appropriate sunlinsol object and call the function
KINSetLinearSolver, as documented below. To create the SUNLinearSolver object, the user may
call one of the sundials-packaged sunlinsol module constructor routines via a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

The current list of such constructor routines includes SUNLinSol Dense, SUNLinSol Band, SUNLinSol LapackDense,
SUNLinSol LapackBand, SUNLinSol KLU, SUNLinSol SuperLUMT, SUNLinSol SPGMR, SUNLinSol SPFGMR,
SUNLinSol SPBCGS, SUNLinSol SPTFQMR, and SUNLinSol PCG.

Alternately, a user-supplied SUNLinearSolver module may be created and used instead. The use
of each of the generic linear solvers involves certain constants, functions and possibly some macros,
that are likely to be needed in the user code. These are available in the corresponding header file
associated with the specific sunmatrix or sunlinsol module in question, as described in Chapters
7 and 8.

Once this solver object has been constructed, the user should attach it to kinsol via a call to
KINSetLinearSolver. The first argument passed to this function is the kinsol memory pointer
returned by KINCreate; the second argument is the desired sunlinsol object to use for solving
Newton or Picard systems. The third argument is an optional sunmatrix object to accompany
matrix-based sunlinsol inputs (for matrix-free linear solvers, the third argument should be NULL). A
call to this function initializes the kinls linear solver interface, linking it to the main kinsol solver,
and allows the user to specify additional parameters and routines pertinent to their choice of linear
solver.

KINSetLinearSolver

Call flag = KINSetLinearSolver(kin mem, LS, J);

Description The function KINSetLinearSolver attaches a generic sunlinsol object LS and corre-
sponding template Jacobian sunmatrix object J (if applicable) to kinsol, initializing
the kinls linear solver interface.

Arguments kin mem (void *) pointer to the kinsol memory block.

LS (SUNLinearSolver) sunlinsol object to use for solving Newton linear sys-
tems.

J (SUNMatrix) sunmatrix object for used as a template for the Jacobian (or
NULL if not applicable).

Return value The return value flag (of type int) is one of

KINLS SUCCESS The kinls initialization was successful.

KINLS MEM NULL The kin mem pointer is NULL.

KINLS ILL INPUT The kinls interface is not compatible with the LS or J input objects
or is incompatible with the current nvector module.

KINLS SUNLS FAIL A call to the LS object failed.

KINLS MEM FAIL A memory allocation request failed.

Notes If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used
in the solve process, so if additional storage is required within the sunmatrix object
(e.g. for factorization of a banded matrix), ensure that the input object is allocated
with sufficient size (see the documentation of the particular sunmatrix type in Chapter
7 for further information).

The previous routines KINDlsSetLinearSolver and KINSpilsSetLinearSolver are
now wrappers for this routine, and may still be used for backward-compatibility. How-
ever, these will be deprecated in future releases, so we recommend that users transition
to the new routine name soon.

4.5 User-callable functions 33

4.5.3 KINSOL solver function

This is the central step in the solution process, the call to solve the nonlinear algebraic system.

KINSol

Call flag = KINSol(kin mem, u, strategy, u scale, f scale);

Description The function KINSol computes an approximate solution to the nonlinear system.

Arguments kin mem (void *) pointer to the kinsol memory block.

u (N Vector) vector set to initial guess by user before calling KINSol, but
which upon return contains an approximate solution of the nonlinear system
F (u) = 0.

strategy (int) strategy used to solve the nonlinear system. It must be of the follow-
ing:
KIN NONE basic Newton iteration
KIN LINESEARCH Newton with globalization
KIN FP fixed-point iteration with Anderson Acceleration (no linear solver
needed)
KIN PICARD Picard iteration with Anderson Acceleration (uses a linear solver)

u scale (N Vector) vector containing diagonal elements of scaling matrix Du for vec-
tor u chosen so that the components of Du·u (as a matrix multiplication) all
have roughly the same magnitude when u is close to a root of F (u).

f scale (N Vector) vector containing diagonal elements of scaling matrixDF for F (u)
chosen so that the components of DF · F (u) (as a matrix multiplication) all
have roughly the same magnitude when u is not too near a root of F (u). In
the case of a fixed-point iteration, consider F (u) = G(u)− u.

Return value On return, KINSol returns the approximate solution in the vector u if successful. The
return value flag (of type int) will be one of the following:

KIN SUCCESS

KINSol succeeded; the scaled norm of F (u) is less than fnormtol.

KIN INITIAL GUESS OK

The guess u = u0 satisfied the system F (u) = 0 within the tolerances specified (the
scaled norm of F (u0) is less than 0.01*fnormtol).

KIN STEP LT STPTOL

kinsol stopped based on scaled step length. This means that the current iterate may
be an approximate solution of the given nonlinear system, but it is also quite possible
that the algorithm is “stalled” (making insufficient progress) near an invalid solution,
or that the scalar scsteptol is too large (see KINSetScaledStepTol in §4.5.4 to
change scsteptol from its default value).

KIN MEM NULL

The kinsol memory block pointer was NULL.

KIN ILL INPUT

An input parameter was invalid.

KIN NO MALLOC

The kinsol memory was not allocated by a call to KINCreate.

KIN MEM FAIL

A memory allocation failed.

KIN LINESEARCH NONCONV

The line search algorithm was unable to find an iterate sufficiently distinct from the
current iterate, or could not find an iterate satisfying the sufficient decrease condition.

34 Using KINSOL for C Applications

Failure to satisfy the sufficient decrease condition could mean the current iterate
is “close” to an approximate solution of the given nonlinear system, the difference
approximation of the matrix-vector product J(u)v is inaccurate, or the real scalar
scsteptol is too large.

KIN MAXITER REACHED

The maximum number of nonlinear iterations has been reached.

KIN MXNEWT 5X EXCEEDED

Five consecutive steps have been taken that satisfy the inequality ‖Dup‖L2 > 0.99
mxnewtstep, where p denotes the current step and mxnewtstep is a scalar upper
bound on the scaled step length. Such a failure may mean that ‖DFF (u)‖L2 asymp-
totes from above to a positive value, or the real scalar mxnewtstep is too small.

KIN LINESEARCH BCFAIL

The line search algorithm was unable to satisfy the “beta-condition” for MXNBCF +1
nonlinear iterations (not necessarily consecutive), which may indicate the algorithm
is making poor progress.

KIN LINSOLV NO RECOVERY

The user-supplied routine psolve encountered a recoverable error, but the precondi-
tioner is already current.

KIN LINIT FAIL

The kinls initialization routine (linit) encountered an error.

KIN LSETUP FAIL

The kinls setup routine (lsetup) encountered an error; e.g., the user-supplied routine
pset (used to set up the preconditioner data) encountered an unrecoverable error.

KIN LSOLVE FAIL

The kinls solve routine (lsolve) encountered an error; e.g., the user-supplied routine
psolve (used to to solve the preconditioned linear system) encountered an unrecov-
erable error.

KIN SYSFUNC FAIL

The system function failed in an unrecoverable manner.

KIN FIRST SYSFUNC ERR

The system function failed recoverably at the first call.

KIN REPTD SYSFUNC ERR

The system function had repeated recoverable errors. No recovery is possible.

Notes The components of vectors u scale and f scale should be strictly positive.

KIN SUCCESS = 0, KIN INITIAL GUESS OK = 1, and KIN STEP LT STPTOL = 2. All
remaining return values are negative and therefore a test flag < 0 will trap all KINSol
failures.

4.5.4 Optional input functions

There are numerous optional input parameters that control the behavior of the kinsol solver. kinsol
provides functions that can be used to change these from their default values. Table 4.2 lists all
optional input functions in kinsol which are then described in detail in the remainder of this section,
beginning with those for the main kinsol solver and continuing with those for the kinls linear solver
interface. For the most casual use of kinsol, the reader can skip to §4.6.

We note that, on error return, all of these functions also send an error message to the error handler
function. We also note that all error return values are negative, so a test flag < 0 will catch any
error.

4.5 User-callable functions 35

Table 4.2: Optional inputs for kinsol and kinls

Optional input Function name Default
KINSOL main solver

Error handler function KINSetErrHandlerFn internal fn.
Pointer to an error file KINSetErrFile stderr

Info handler function KINSetInfoHandlerFn internal fn.
Pointer to an info file KINSetInfoFile stdout

Data for problem-defining function KINSetUserData NULL

Verbosity level of output KINSetPrintLevel 0
Max. number of nonlinear iterations KINSetNumMaxIters 200
No initial matrix setup KINSetNoInitSetup SUNFALSE

No residual monitoring∗ KINSetNoResMon SUNFALSE

Max. iterations without matrix setup KINSetMaxSetupCalls 10
Max. iterations without residual check∗ KINSetMaxSubSetupCalls 5
Form of η coefficient KINSetEtaForm KIN ETACHOICE1

Constant value of η KINSetEtaConstValue 0.1
Values of γ and α KINSetEtaParams 0.9 and 2.0
Values of ωmin and ωmax

∗ KINSetResMonParams 0.00001 and 0.9
Constant value of ω∗ KINSetResMonConstValue 0.9
Lower bound on ε KINSetNoMinEps SUNFALSE

Max. scaled length of Newton step KINSetMaxNewtonStep 1000‖Duu0‖2
Max. number of β-condition failures KINSetMaxBetaFails 10

Rel. error for D.Q. Jv KINSetRelErrFunc
√

uround
Function-norm stopping tolerance KINSetFuncNormTol uround1/3

Scaled-step stopping tolerance KINSetScaledSteptol uround2/3

Inequality constraints on solution KINSetConstraints NULL

Nonlinear system function KINSetSysFunc none
Anderson Acceleration subspace size KINSetMAA 0

KINLS linear solver interface
Jacobian function KINSetJacFn DQ
Preconditioner functions and data KINSetPreconditioner NULL, NULL, NULL
Jacobian-times-vector function and data KINSetJacTimesVecFn internal DQ,

NULL

36 Using KINSOL for C Applications

4.5.4.1 Main solver optional input functions

The calls listed here can be executed in any order. However, if either of the functions KINSetErrFile
or KINSetErrHandlerFn is to be called, that call should be first, in order to take effect for any later
error message.

KINSetErrFile

Call flag = KINSetErrFile(kin mem, errfp);

Description The function KINSetErrFile specifies the pointer to the file where all kinsol messages
should be directed when the default kinsol error handler function is used.

Arguments kin mem (void *) pointer to the kinsol memory block.

errfp (FILE *) pointer to output file.

Return value The return value flag (of type int) is one of

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes The default value for errfp is stderr.

Passing a value of NULL disables all future error message output (except for the case
in which the kinsol memory pointer is NULL). This use of KINSetErrFile is strongly
discouraged.

If KINSetErrFile is to be called, it should be called before any other optional input!

functions, in order to take effect for any later error message.

KINSetErrHandlerFn

Call flag = KINSetErrHandlerFn(kin mem, ehfun, eh data);

Description The function KINSetErrHandlerFn specifies the optional user-defined function to be
used in handling error messages.

Arguments kin mem (void *) pointer to the kinsol memory block.

ehfun (KINErrHandlerFn) is the user’s C error handler function (see §4.6.2).

eh data (void *) pointer to user data passed to ehfun every time it is called.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The function ehfun and data pointer eh data have been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes The default internal error handler function directs error messages to the file specified
by the file pointer errfp (see KINSetErrFile above).

Error messages indicating that the kinsol solver memory is NULL will always be directed
to stderr.

KINSetInfoFile

Call flag = KINSetInfoFile(kin mem, infofp);

Description The function KINSetInfoFile specifies the pointer to the file where all informative
(non-error) messages should be directed.

Arguments kin mem (void *) pointer to the kinsol memory block.

infofp (FILE *) pointer to output file.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes The default value for infofp is stdout.

4.5 User-callable functions 37

KINSetInfoHandlerFn

Call flag = KINSetInfoHandlerFn(kin mem, ihfun, ih data);

Description The function KINSetInfoHandlerFn specifies the optional user-defined function to be
used in handling informative (non-error) messages.

Arguments kin mem (void *) pointer to the kinsol memory block.

ihfun (KINInfoHandlerFn) is the user’s C information handler function (see §4.6.3).

ih data (void *) pointer to user data passed to ihfun every time it is called.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The function ihfun and data pointer ih data have been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes The default internal information handler function directs informative (non-error) mes-
sages to the file specified by the file pointer infofp (see KINSetInfoFile above).

KINSetPrintLevel

Call flag = KINSetPrintLevel(kin mem, printfl);

Description The function KINSetPrintLevel specifies the level of verbosity of the output.

Arguments kin mem (void *) pointer to the kinsol memory block.

printfl (int) flag indicating the level of verbosity. Must be one of:

0 no information displayed.

1 for each nonlinear iteration display the following information: the scaled
Euclidean `2 norm of the system function evaluated at the current iterate,
the scaled norm of the Newton step (only if using KIN NONE), and the
number of function evaluations performed so far.

2 display level 1 output and the following values for each iteration:
‖F (u)‖DF

(only for KIN NONE).
‖F (u)‖DF ,∞ (for KIN NONE and KIN LINESEARCH).

3 display level 2 output plus additional values used by the global strategy
(only if using KIN LINESEARCH), and statistical information for iterative
linear solver modules.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument printfl had an illegal value.

Notes The default value for printfl is 0.

KINSetUserData

Call flag = KINSetUserData(kin mem, user data);

Description The function KINSetUserData specifies the pointer to user-defined memory that is to
be passed to all user-supplied functions.

Arguments kin mem (void *) pointer to the kinsol memory block.

user data (void *) pointer to the user-defined memory.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

38 Using KINSOL for C Applications

Notes If specified, the pointer to user data is passed to all user-supplied functions that have
it as an argument. Otherwise, a NULL pointer is passed.

If user data is needed in user linear solver or preconditioner functions, the call to !

KINSetUserData must be made before the call to specify the linear solver module.

KINSetNumMaxIters

Call flag = KINSetNumMaxIters(kin mem, mxiter);

Description The function KINSetNumMaxIters specifies the maximum number of nonlinear iterations
allowed.

Arguments kin mem (void *) pointer to the kinsol memory block.

mxiter (long int) maximum number of nonlinear iterations.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The maximum number of iterations was non-positive.

Notes The default value for mxiter is MXITER DEFAULT = 200.

KINSetNoInitSetup

Call flag = KINSetNoInitSetup(kin mem, noInitSetup);

Description The function KINSetNoInitSetup specifies whether an initial call to the preconditioner
or Jacobian setup function should be made or not.

Arguments kin mem (void *) pointer to the kinsol memory block.

noInitSetup (booleantype) flag controlling whether an initial call to the precondi-
tioner or Jacobian setup function is made (pass SUNFALSE) or not made
(pass SUNTRUE).

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes The default value for noInitSetup is SUNFALSE, meaning that an initial call to the
preconditioner or Jacobian setup function will be made.

A call to this function is useful when solving a sequence of problems, in which the final
preconditioner or Jacobian value from one problem is to be used initially for the next
problem.

KINSetNoResMon

Call flag = KINSetNoResMon(kin mem, noNNIResMon);

Description The function KINSetNoResMon specifies whether or not the nonlinear residual monitoring
scheme is used to control Jacobian updating

Arguments kin mem (void *) pointer to the kinsol memory block.

noNNIResMon (booleantype) flag controlling whether residual monitoring is used (pass
SUNFALSE) or not used (pass SUNTRUE).

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

4.5 User-callable functions 39

Notes When using a direct solver, the default value for noNNIResMon is SUNFALSE, meaning
that the nonlinear residual will be monitored.

Residual monitoring is only available for use with matrix-based linear solver modules.!

KINSetMaxSetupCalls

Call flag = KINSetMaxSetupCalls(kin mem, msbset);

Description The function KINSetMaxSetupCalls specifies the maximum number of nonlinear iter-
ations that can be performed between calls to the preconditioner or Jacobian setup
function.

Arguments kin mem (void *) pointer to the kinsol memory block.

msbset (long int) maximum number of nonlinear iterations without a call to the
preconditioner or Jacobian setup function. Pass 0 to indicate the default.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument msbset was negative.

Notes The default value for msbset is MSBSET DEFAULT = 10.

The value of msbset should be a multiple of msbsetsub (see KINSetMaxSubSetupCalls).

KINSetMaxSubSetupCalls

Call flag = KINSetMaxSubSetupCalls(kin mem, msbsetsub);

Description The function KINSetMaxSubSetupCalls specifies the maximum number of nonlinear
iterations between checks by the residual monitoring algorithm.

Arguments kin mem (void *) pointer to the kinsol memory block.

msbsetsub (long int) maximum number of nonlinear iterations without checking the
nonlinear residual. Pass 0 to indicate the default.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument msbsetsub was negative.

Notes The default value for msbsetsub is MSBSET SUB DEFAULT = 5.

The value of msbset (see KINSetMaxSetupCalls) should be a multiple of msbsetsub.

Residual monitoring is only available for use with matrix-based linear solver modules. !

KINSetEtaForm

Call flag = KINSetEtaForm(kin mem, etachoice);

Description The function KINSetEtaForm specifies the method for computing the value of the η
coefficient used in the calculation of the linear solver convergence tolerance.

Arguments kin mem (void *) pointer to the kinsol memory block.

etachoice (int) flag indicating the method for computing η. The value must be one
of KIN ETACHOICE1, KIN ETACHOICE2, or KIN ETACONSTANT (see Chapter 2
for details).

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

40 Using KINSOL for C Applications

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument etachoice had an illegal value.

Notes The default value for etachoice is KIN ETACHOICE1.

When using either KIN ETACHOICE1 or KIN ETACHOICE2 the safeguard

ηn = max(ηn, ηsafe)

is applied when ηsafe > 0.1. For KIN ETACHOICE1

ηsafe = η
1+

√
5

2
n−1

and for KIN ETACHOICE2

ηsafe = γηαn−1

where γ and α can be set with KINSetEtaParams.

The following safeguards are always applied when using either KIN ETACHOICE1 or
KIN ETACHOICE2 so that ηmin ≤ ηn ≤ ηmax:

ηn = max(ηn, ηmin)

ηn = min(ηn, ηmax)

where ηmin = 10−4 and ηmax = 0.9.

KINSetEtaConstValue

Call flag = KINSetEtaConstValue(kin mem, eta);

Description The function KINSetEtaConstValue specifies the constant value for η in the case
etachoice = KIN ETACONSTANT.

Arguments kin mem (void *) pointer to the kinsol memory block.

eta (realtype) constant value for η. Pass 0.0 to indicate the default.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument eta had an illegal value

Notes The default value for eta is 0.1. The legal values are 0.0 < eta ≤ 1.0.

KINSetEtaParams

Call flag = KINSetEtaParams(kin mem, egamma, ealpha);

Description The function KINSetEtaParams specifies the parameters γ and α in the formula for η,
in the case etachoice = KIN ETACHOICE2.

Arguments kin mem (void *) pointer to the kinsol memory block.

egamma (realtype) value of the γ parameter. Pass 0.0 to indicate the default.

ealpha (realtype) value of the α parameter. Pass 0.0 to indicate the default.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional values have been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT One of the arguments egamma or ealpha had an illegal value.

Notes The default values for egamma and ealpha are 0.9 and 2.0, respectively.

The legal values are 0.0 < egamma ≤ 1.0 and 1.0 < ealpha ≤ 2.0.

4.5 User-callable functions 41

KINSetResMonConstValue

Call flag = KINSetResMonConstValue(kin mem, omegaconst);

Description The function KINSetResMonConstValue specifies the constant value for ω when using
residual monitoring.

Arguments kin mem (void *) pointer to the kinsol memory block.

omegaconst (realtype) constant value for ω. Passing 0.0 results in using Eqn. (2.4).

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument omegaconst had an illegal value

Notes The default value for omegaconst is 0.9. The legal values are 0.0 < omegaconst < 1.0.

KINSetResMonParams

Call flag = KINSetResMonParams(kin mem, omegamin, omegamax);

Description The function KINSetResMonParams specifies the parameters ωmin and ωmax in the for-
mula (2.4) for ω.

Arguments kin mem (void *) pointer to the kinsol memory block.

omegamin (realtype) value of the ωmin parameter. Pass 0.0 to indicate the default.

omegamax (realtype) value of the ωmax parameter. Pass 0.0 to indicate the default.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional values have been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT One of the arguments omegamin or omegamax had an illegal value.

Notes The default values for omegamin and omegamax are 0.00001 and 0.9, respectively.

The legal values are 0.0 < omegamin < omegamax < 1.0.

KINSetNoMinEps

Call flag = KINSetNoMinEps(kin mem, noMinEps);

Description The function KINSetNoMinEps specifies a flag that controls whether or not the value of
ε, the scaled linear residual tolerance, is bounded from below.

Arguments kin mem (void *) pointer to the kinsol memory block.

noMinEps (booleantype) flag controlling the bound on ε. If SUNFALSE is passed the
value of ε is constrained and if SUNTRUE is passed then ε is not constrained.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes The default value for noMinEps is SUNFALSE, meaning that a positive minimum value,
equal to 0.01*fnormtol, is applied to ε (see KINSetFuncNormTol below).

KINSetMaxNewtonStep

Call flag = KINSetMaxNewtonStep(kin mem, mxnewtstep);

Description The function KINSetMaxNewtonStep specifies the maximum allowable scaled length of
the Newton step.

Arguments kin mem (void *) pointer to the kinsol memory block.

42 Using KINSOL for C Applications

mxnewtstep (realtype) maximum scaled step length (≥ 0.0). Pass 0.0 to indicate the
default.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The input value was negative.

Notes The default value of mxnewtstep is 1000 ‖u0‖Du
, where u0 is the initial guess.

KINSetMaxBetaFails

Call flag = KINSetMaxBetaFails(kin mem, mxnbcf);

Description The function KINSetMaxBetaFails specifies the maximum number of β-condition fail-
ures in the linesearch algorithm.

Arguments kin mem (void *) pointer to the kinsol memory block.

mxnbcf (realtype) maximum number of β-condition failures. Pass 0.0 to indicate the
default.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT mxnbcf was negative.

Notes The default value of mxnbcf is MXNBCF DEFAULT = 10.

KINSetRelErrFunc

Call flag = KINSetRelErrFunc(kin mem, relfunc);

Description The function KINSetRelErrFunc specifies the relative error in computing F (u), which
is used in the difference quotient approximation to the Jacobian matrix [see Eq.(2.7)]
or the Jacobian-vector product [see Eq.(2.9)]. The value stored is

√
relfunc.

Arguments kin mem (void *) pointer to the kinsol memory block.

relfunc (realtype) relative error in F (u) (relfunc ≥ 0.0). Pass 0.0 to indicate the
default.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The relative error was negative.

Notes The default value for relfunc is U = unit roundoff.

KINSetFuncNormTol

Call flag = KINSetFuncNormTol(kin mem, fnormtol);

Description The function KINSetFuncNormTol specifies the scalar used as a stopping tolerance on
the scaled maximum norm of the system function F (u).

Arguments kin mem (void *) pointer to the kinsol memory block.

fnormtol (realtype) tolerance for stopping based on scaled function norm (≥ 0.0).
Pass 0.0 to indicate the default.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

4.5 User-callable functions 43

KIN ILL INPUT The tolerance was negative.

Notes The default value for fnormtol is (unit roundoff)1/3.

KINSetScaledStepTol

Call flag = KINSetScaledStepTol(kin mem, scsteptol);

Description The function KINSetScaledStepTol specifies the scalar used as a stopping tolerance on
the minimum scaled step length.

Arguments kin mem (void *) pointer to the kinsol memory block.

scsteptol (realtype) tolerance for stopping based on scaled step length (≥ 0.0). Pass
0.0 to indicate the default.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The tolerance was non-positive.

Notes The default value for scsteptol is (unit roundoff)2/3.

KINSetConstraints

Call flag = KINSetConstraints(kin mem, constraints);

Description The function KINSetConstraints specifies a vector that defines inequality constraints
for each component of the solution vector u.

Arguments kin mem (void *) pointer to the kinsol memory block.

constraints (N Vector) vector of constraint flags. If constraints[i] is

0.0 then no constraint is imposed on ui.

1.0 then ui will be constrained to be ui ≥ 0.0.

−1.0 then ui will be constrained to be ui ≤ 0.0.

2.0 then ui will be constrained to be ui > 0.0.

−2.0 then ui will be constrained to be ui < 0.0.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The constraint vector contains illegal values.

Notes The presence of a non-NULL constraints vector that is not 0.0 in all components will
cause constraint checking to be performed. If a NULL vector is supplied, constraint
checking will be disabled.

The function creates a private copy of the constraints vector. Consequently, the user-
supplied vector can be freed after the function call, and the constraints can only be
changed by calling this function.

KINSetSysFunc

Call flag = KINSetSysFunc(kin mem, func);

Description The function KINSetSysFunc specifies the user-provided function that evaluates the
nonlinear system function F (u) or G(u).

Arguments kin mem (void *) pointer to the kinsol memory block.

func (KINSysFn) user-supplied function that evaluates F (u) (or G(u) for fixed-point
iteration).

44 Using KINSOL for C Applications

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument func was NULL.

Notes The nonlinear system function is initially specified through KINInit. The option of
changing the system function is provided for a user who wishes to solve several problems
of the same size but with different functions.

KINSetMAA

Call flag = KINSetMAA(kin mem, maa);

Description The function KINSetMAA specifies the size of the subspace used with Anderson acceler-
ation in conjunction with Picard or fixed-point iteration.

Arguments kin mem (void *) pointer to the kinsol memory block.

maa (long int) subspace size for various methods. A value of 0 means no acceler-
ation, while a positive value means acceleration will be done.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KIN ILL INPUT The argument maa was negative.

Notes This function sets the subspace size, which needs to be > 0 if Anderson Acceleration is
to be used. It also allocates additional memory necessary for Anderson Acceleration.

The default value of maa is 0, indicating no acceleration. The value of maa should always
be less than mxiter.

This function MUST be called before calling KINInit.

If the user calls the function KINSetNumMaxIters, that call should be made before the
call to KINSetMAA, as the latter uses the value of mxiter.

4.5.4.2 Linear solver interface optional input functions

For matrix-based linear solver modules, the kinls solver interface needs a function to compute an
approximation to the Jacobian matrix J(u). This function must be of type KINLsJacFn. The user
can supply a Jacobian function, or if using a dense or banded matrix J can use the default internal
difference quotient approximation that comes with the kinls solver. To specify a user-supplied Jaco-
bian function jac, kinls provides the function KINSetJacFn. The kinls interface passes the pointer
user data to the Jacobian function. This allows the user to create an arbitrary structure with rele-
vant problem data and access it during the execution of the user-supplied Jacobian function, without
using global data in the program. The pointer user data may be specified through KINSetUserData.

KINSetJacFn

Call flag = KINSetJacFn(kin mem, jac);

Description The function KINSetJacFn specifies the Jacobian approximation function to be used.

Arguments kin mem (void *) pointer to the kinsol memory block.

jac (KINLsJacFn) user-defined Jacobian approximation function.

Return value The return value flag (of type int) is one of

KINLS SUCCESS The optional value has been successfully set.

KINLS MEM NULL The kin mem pointer is NULL.

4.5 User-callable functions 45

KINLS LMEM NULL The kinls linear solver interface has not been initialized.

Notes By default, kinls uses an internal difference quotient function for dense and band
matrices. If NULL is passed to jac, this default function is used. An error will occur if
no jac is supplied when using a sparse or user-supplied matrix.

This function must be called after the kinls linear solver interface has been initialized
through a call to KINSetLinearSolver.

The function type KINLsJacFn is described in §4.6.4.

The previous routine KINDlsSetJacFn is now a wrapper for this routine, and may still
be used for backward-compatibility. However, this will be deprecated in future releases,
so we recommend that users transition to the new routine name soon.

When using matrix-free linear solver modules, the kinls linear solver interface requires a function
to compute an approximation to the product between the Jacobian matrix J(u) and a vector v.
The user can supply his/her own Jacobian-times-vector approximation function, or use the inter-
nal difference quotient approximation that comes with the kinls solver interface. A user-defined
Jacobian-vector function must be of type KINLsJacTimesVecFn and can be specified through a call
to KINLsSetJacTimesVecFn (see §4.6.5 for specification details).

The pointer user data received through KINSetUserData (or a pointer to NULL if user data was
not specified) is passed to the Jacobian-times-vector function jtimes each time it is called. This
allows the user to create an arbitrary structure with relevant problem data and access it during the
execution of the user-supplied functions without using global data in the program.

KINSetJacTimesVecFn

Call flag = KINSetJacTimesVecFn(kin mem, jtimes);

Description The function KINSetJacTimesVecFn specifies the Jacobian-vector product function.

Arguments kin mem (void *) pointer to the kinsol memory block.

jtimes (KINLsJacTimesVecFn) user-defined Jacobian-vector product function.

Return value The return value flag (of type int) is one of

KINLS SUCCESS The optional value has been successfully set.

KINLS MEM NULL The kin mem pointer is NULL.

KINLS LMEM NULL The kinls linear solver has not been initialized.

KINLS SUNLS FAIL An error occurred when setting up the system matrix-times-vector
routines in the sunlinsol object used by the kinls interface.

Notes The default is to use an internal difference quotient for jtimes. If NULL is passed as
jtimes, this default is used.

This function must be called after the kinls linear solver interface has been initialized
through a call to KINSetLinearSolver.

The function type KINLsJacTimesVecFn is described in §4.6.5.

The previous routine KINSpilsSetJacTimesVecFn is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

When using an iterative linear solver, the user may supply a preconditioning operator to aid in
solution of the system. This operator consists of two user-supplied functions, psetup and psolve,
that are supplied to kinls using the function KINSetPreconditioner. The psetup function supplied
to this routine should handle evaluation and preprocessing of any Jacobian data needed by the user’s
preconditioner solve function, psolve. Both of these functions are fully specified in §4.6. The user
data pointer received through KINSetUserData (or a pointer to NULL if user data was not specified) is
passed to the psetup and psolve functions. This allows the user to create an arbitrary structure with
relevant problem data and access it during the execution of the user-supplied preconditioner functions
without using global data in the program.

46 Using KINSOL for C Applications

KINSetPreconditioner

Call flag = KINSetPreconditioner(kin mem, psetup, psolve);

Description The function KINSetPreconditioner specifies the preconditioner setup and solve func-
tions.

Arguments kin mem (void *) pointer to the kinsol memory block.

psetup (KINLsPrecSetupFn) user-defined function to set up the preconditioner. Pass
NULL if no setup operation is necessary.

psolve (KINLsPrecSolveFn) user-defined preconditioner solve function.

Return value The return value flag (of type int) is one of

KINLS SUCCESS The optional values have been successfully set.

KINLS MEM NULL The kin mem pointer is NULL.

KINLS LMEM NULL The kinls linear solver has not been initialized.

KINLS SUNLS FAIL An error occurred when setting up preconditioning in the sunlinsol
object used by the kinls interface.

Notes The default is NULL for both arguments (i.e., no preconditioning).

This function must be called after the kinls linear solver interface has been initialized
through a call to KINSetLinearSolver.

The function type KINLsPrecSolveFn is described in §4.6.6.

The function type KINLsPrecSetupFn is described in §4.6.7.

The previous routine KINSpilsSetPreconditioner is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

4.5.5 Optional output functions

kinsol provides an extensive list of functions that can be used to obtain solver performance informa-
tion. Table 4.3 lists all optional output functions in kinsol, which are then described in detail in the
remainder of this section, beginning with those for the main kinsol solver and continuing with those
for the kinls linear solver interface. Where the name of an output from a linear solver module would
otherwise conflict with the name of an optional output from the main solver, a suffix LS (for Linear
Solver) has been added here (e.g., lenrwLS).

4.5.5.1 SUNDIALS version information

The following functions provide a way to get sundials version information at runtime.

SUNDIALSGetVersion

Call flag = SUNDIALSGetVersion(version, len);

Description The function SUNDIALSGetVersion fills a character array with sundials version infor-
mation.

Arguments version (char *) character array to hold the sundials version information.

len (int) allocated length of the version character array.

Return value If successful, SUNDIALSGetVersion returns 0 and version contains the sundials ver-
sion information. Otherwise, it returns −1 and version is not set (the input character
array is too short).

Notes A string of 25 characters should be sufficient to hold the version information. Any
trailing characters in the version array are removed.

4.5 User-callable functions 47

Table 4.3: Optional outputs from kinsol and kinls

Optional output Function name
KINSOL main solver

Size of kinsol real and integer workspaces KINGetWorkSpace

Number of function evaluations KINGetNumFuncEvals

Number of nonlinear iterations KINGetNumNolinSolvIters

Number of β-condition failures KINGetNumBetaCondFails

Number of backtrack operations KINGetNumBacktrackOps

Scaled norm of F KINGetFuncNorm

Scaled norm of the step KINGetStepLength

KINLS linear solver interface
Size of real and integer workspaces KINGetLinWorkSpace

No. of Jacobian evaluations KINGetNumJacEvals

No. of F calls for D.Q. Jacobian[-vector] evals. KINGetNumLinFuncEvals

No. of linear iterations KINGetNumLinIters

No. of linear convergence failures KINGetNumLinConvFails

No. of preconditioner evaluations KINGetNumPrecEvals

No. of preconditioner solves KINGetNumPrecSolves

No. of Jacobian-vector product evaluations KINGetNumJtimesEvals

Last return from a kinls function KINGetLastLinFlag

Name of constant associated with a return flag KINGetLinReturnFlagName

SUNDIALSGetVersionNumber

Call flag = SUNDIALSGetVersionNumber(&major, &minor, &patch, label, len);

Description The function SUNDIALSGetVersionNumber set integers for the sundials major, minor,
and patch release numbers and fills a character array with the release label if applicable.

Arguments major (int) sundials release major version number.

minor (int) sundials release minor version number.

patch (int) sundials release patch version number.

label (char *) character array to hold the sundials release label.

len (int) allocated length of the label character array.

Return value If successful, SUNDIALSGetVersionNumber returns 0 and the major, minor, patch, and
label values are set. Otherwise, it returns −1 and the values are not set (the input
character array is too short).

Notes A string of 10 characters should be sufficient to hold the label information. If a label
is not used in the release version, no information is copied to label. Any trailing
characters in the label array are removed.

4.5.5.2 Main solver optional output functions

kinsol provides several user-callable functions that can be used to obtain different quantities that
may be of interest to the user, such as solver workspace requirements and solver performance statistics.
These optional output functions are described next.

KINGetWorkSpace

Call flag = KINGetWorkSpace(kin mem, &lenrw, &leniw);

Description The function KINGetWorkSpace returns the kinsol integer and real workspace sizes.

Arguments kin mem (void *) pointer to the kinsol memory block.

48 Using KINSOL for C Applications

lenrw (long int) the number of realtype values in the kinsol workspace.

leniw (long int) the number of integer values in the kinsol workspace.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output values have been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

Notes In terms of the problem size N , the actual size of the real workspace is 17+5N realtype

words. The real workspace is increased by an additional N words if constraint checking
is enabled (see KINSetConstraints).

The actual size of the integer workspace (without distinction between int and long

int) is 22 + 5N (increased by N if constraint checking is enabled).

KINGetNumFuncEvals

Call flag = KINGetNumFuncEvals(kin mem, &nfevals);

Description The function KINGetNumFuncEvals returns the number of evaluations of the system
function.

Arguments kin mem (void *) pointer to the kinsol memory block.

nfevals (long int) number of calls to the user-supplied function that evaluates F (u).

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KINGetNumNonlinSolvIters

Call flag = KINGetNumNonlinSolvIters(kin mem, &nniters);

Description The function KINGetNumNonlinSolvIters returns the number of nonlinear iterations.

Arguments kin mem (void *) pointer to the kinsol memory block.

nniters (long int) number of nonlinear iterations.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KINGetNumBetaCondFails

Call flag = KINGetNumBetaCondFails(kin mem, &nbcfails);

Description The function KINGetNumBetaCondFails returns the number of β-condition failures.

Arguments kin mem (void *) pointer to the kinsol memory block.

nbcfails (long int) number of β-condition failures.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

4.5 User-callable functions 49

KINGetNumBacktrackOps

Call flag = KINGetNumBacktrackOps(kin mem, &nbacktr);

Description The function KINGetNumBacktrackOps returns the number of backtrack operations (step
length adjustments) performed by the line search algorithm.

Arguments kin mem (void *) pointer to the kinsol memory block.

nbacktr (long int) number of backtrack operations.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KINGetFuncNorm

Call flag = KINGetFuncNorm(kin mem, &fnorm);

Description The function KINGetFuncNorm returns the scaled Euclidean `2 norm of the nonlinear
system function F (u) evaluated at the current iterate.

Arguments kin mem (void *) pointer to the kinsol memory block.

fnorm (realtype) current scaled norm of F (u).

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

KINGetStepLength

Call flag = KINGetStepLength(kin mem, &steplength);

Description The function KINGetStepLength returns the scaled Euclidean `2 norm of the step used
during the previous iteration.

Arguments kin mem (void *) pointer to the kinsol memory block.

steplength (realtype) scaled norm of the Newton step.

Return value The return value flag (of type int) is one of:

KIN SUCCESS The optional output value has been successfully set.

KIN MEM NULL The kin mem pointer is NULL.

4.5.5.3 kinls linear solver interface optional output functions

The following optional outputs are available from the kinls module: workspace requirements, number
of calls to the Jacobian routine, number of calls to the system function routine for difference quotient
Jacobian or Jacobian-vector approximation, number of linear iterations, number of linear convergence
failures, number of calls to the preconditioner setup and solve routines, number of calls to the Jacobian-
vector product routine, and last return value from a kinls function.

KINGetLinWorkSpace

Call flag = KINGetLinWorkSpace(kin mem, &lenrwLS, &leniwLS);

Description The function KINGetLinWorkSpace returns the kinls real and integer workspace sizes.

Arguments kin mem (void *) pointer to the kinsol memory block.

lenrwLS (long int) the number of realtype values in the kinls workspace.

leniwLS (long int) the number of integer values in the kinls workspace.

Return value The return value flag (of type int) is one of

50 Using KINSOL for C Applications

KINLS SUCCESS The optional output value has been successfully set.

KINLS MEM NULL The kin mem pointer is NULL.

KINLS LMEM NULL The kinls linear solver interface has not been initialized.

Notes The workspace requirements reported by this routine correspond only to memory allo-
cated within this interface and to memory allocated by the sunlinsol object attached
to it. The template Jacobian matrix allocated by the user outside of kinls is not
included in this report.

In a parallel setting, the above values are global (i.e., summed over all processors).

The previous routines KINDlsGetWorkspace and KINSpilsGetWorkspace are now wrap-
pers for this routine, and may still be used for backward-compatibility. However, these
will be deprecated in future releases, so we recommend that users transition to the new
routine name soon.

KINGetNumJacEvals

Call flag = KINGetNumJacEvals(kin mem, &njevals);

Description The function KINGetNumJacEvals returns the cummulative number of calls to the kinls
Jacobian approximation function.

Arguments kin mem (void *) pointer to the kinsol memory block.

njevals (long int) the number of calls to the Jacobian function.

Return value The return value flag (of type int) is one of

KINLS SUCCESS The optional output value has been successfully set.

KINLS MEM NULL The kin mem pointer is NULL.

KINLS LMEM NULL The kinls linear solver interface has not been initialized.

Notes The previous routine KINDlsGetNumJacEvals is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

KINGetNumLinFuncEvals

Call flag = KINGetNumLinFuncEvals(kin mem, &nfevalsLS);

Description The function KINGetNumLinFuncEvals returns the number of calls to the user system
function used to compute the difference quotient approximation to the Jacobian or to
the Jacobian-vector product.

Arguments kin mem (void *) pointer to the kinsol memory block.

nfevalsLS (long int) the number of calls to the user system function.

Return value The return value flag (of type int) is one of

KINLS SUCCESS The optional output value has been successfully set.

KINLS MEM NULL The kin mem pointer is NULL.

KINLS LMEM NULL The kinls linear solver interface has not been initialized.

Notes The value nfevalsLS is incremented only if one of the default internal difference quotient
functions is used.

The previous routines KINDlsGetNumFuncEvals and KINSpilsGetNumFuncEvals are
now wrappers for this routine, and may still be used for backward-compatibility. How-
ever, these will be deprecated in future releases, so we recommend that users transition
to the new routine name soon.

4.5 User-callable functions 51

KINGetNumLinIters

Call flag = KINGetNumLinIters(kin mem, &nliters);

Description The function KINGetNumLinIters returns the cumulative number of linear iterations.

Arguments kin mem (void *) pointer to the kinsol memory block.

nliters (long int) the current number of linear iterations.

Return value The return value flag (of type int) is one of:

KINLS SUCCESS The optional output value has been successfully set.

KINLS MEM NULL The kin mem pointer is NULL.

KINIS LMEM NULL The kinls linear solver interface has not been initialized.

Notes The previous routine KINSpilsGetNumLinIters is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

KINGetNumLinConvFails

Call flag = KINGetNumLinConvFails(kin mem, &nlcfails);

Description The function KINGetNumLinConvFails returns the cumulative number of linear conver-
gence failures.

Arguments kin mem (void *) pointer to the kinsol memory block.

nlcfails (long int) the current number of linear convergence failures.

Return value The return value flag (of type int) is one of:

KINLS SUCCESS The optional output value has been successfully set.

KINLS MEM NULL The kin mem pointer is NULL.

KINLS LMEM NULL The kinls linear solver interface has not been initialized.

Notes The previous routine KINSpilsGetNumConvFails is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

KINGetNumPrecEvals

Call flag = KINGetNumPrecEvals(kin mem, &npevals);

Description The function KINGetNumPrecEvals returns the cumulative number of preconditioner
evaluations, i.e., the number of calls made to psetup.

Arguments kin mem (void *) pointer to the kinsol memory block.

npevals (long int) the current number of calls to psetup.

Return value The return value flag (of type int) is one of:

KINLS SUCCESS The optional output value has been successfully set.

KINLS MEM NULL The kin mem pointer is NULL.

KINLS LMEM NULL The kinls linear solver interface has not been initialized.

Notes The previous routine KINSpilsGetNumPrecEvals is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

52 Using KINSOL for C Applications

KINGetNumPrecSolves

Call flag = KINGetNumPrecSolves(kin mem, &npsolves);

Description The function KINGetNumPrecSolves returns the cumulative number of calls made to
the preconditioner solve function, psolve.

Arguments kin mem (void *) pointer to the kinsol memory block.

npsolves (long int) the current number of calls to psolve.

Return value The return value flag (of type int) is one of:

KINLS SUCCESS The optional output value has been successfully set.

KINLS MEM NULL The kin mem pointer is NULL.

KINLS LMEM NULL The kinls linear solver interface has not been initialized.

Notes The previous routine KINSpilsGetNumPrecSolves is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

KINGetNumJtimesEvals

Call flag = KINGetNumJtimesEvals(kin mem, &njvevals);

Description The function KINGetNumJtimesEvals returns the cumulative number made to the Jacobian-
vector product function, jtimes.

Arguments kin mem (void *) pointer to the kinsol memory block.

njvevals (long int) the current number of calls to jtimes.

Return value The return value flag (of type int) is one of:

KINLS SUCCESS The optional output value has been successfully set.

KINLS MEM NULL The kin mem pointer is NULL.

KINLS LMEM NULL The kinls linear solver interface has not been initialized.

Notes The previous routine KINSpilsGetNumJtimesEvals is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

KINGetLastLinFlag

Call flag = KINGetLastLinFlag(kin mem, &lsflag);

Description The function KINGetLastLinFlag returns the last return value from a kinls routine.

Arguments kin mem (void *) pointer to the kinsol memory block.

lsflag (long int) the value of the last return flag from a kinls function.

Return value The return value flag (of type int) is one of

KINLS SUCCESS The optional output value has been successfully set.

KINLS MEM NULL The kin mem pointer is NULL.

KINLS LMEM NULL The kinls linear solver interface has not been initialized.

Notes If the kinls setup function failed (i.e. KINSolve returned KIN LSETUP FAIL) when
using the sunlinsol dense or sunlinsol band modules, then the value of lsflag is
equal to the column index (numbered from one) at which a zero diagonal element was
encountered during the LU factorization of the (dense or banded) Jacobian matrix.

If the kinls setup function failed when using another sunlinsol module, then lsflag

will be SUNLS PSET FAIL UNREC, SUNLS ASET FAIL UNREC, or SUNLS PACKAGE FAIL UNREC.

If the kinls solve function failed (i.e., KINSol returned KIN LSOLVE FAIL), then lsflag

contains the error return flag from the sunlinsol object, which will be one of the

4.6 User-supplied functions 53

following:
SUNLS MEM NULL, indicating that the sunlinsol memory is NULL;
SUNLS ATIMES FAIL UNREC, indicating an unrecoverable failure in the Jacobian-times-
vector function;
SUNLS PSOLVE FAIL UNREC, indicating that the preconditioner solve function, psolve,
failed with an unrecoverable error;
SUNLS GS FAIL, indicating a failure in the Gram-Schmidt procedure (generated only in
spgmr or spfgmr);
SUNLS QRSOL FAIL, indicating that the matrix R was found to be singular during the
QR solve phase (spgmr and spfgmr only); or
SUNLS PACKAGE FAIL UNREC, indicating an unrecoverable failure in an external iterative
linear solver package.

The previous routines KINDlsGetLastFlag and KINSpilsGetLastFlag are now wrap-
pers for this routine, and may still be used for backward-compatibility. However, these
will be deprecated in future releases, so we recommend that users transition to the new
routine name soon.

KINGetLinReturnFlagName

Call name = KINGetLinReturnFlagName(lsflag);

Description The function KINGetLinReturnFlagName returns the name of the kinls constant cor-
responding to lsflag.

Arguments The only argument, of type long int, is a return flag from an kinls function.

Return value The return value is a string containing the name of the corresponding constant.

Notes The previous routines KINDlsGetReturnFlagName and KINSpilsGetReturnFlagName

are now wrappers for this routine, and may still be used for backward-compatibility.
However, these will be deprecated in future releases, so we recommend that users tran-
sition to the new routine name soon.

4.6 User-supplied functions

The user-supplied functions consist of one function defining the nonlinear system, (optionally) a
function that handles error and warning messages, (optionally) a function that handles informational
messages, (optionally) one or two functions that provides Jacobian-related information for the linear
solver, and (optionally) one or two functions that define the preconditioner for use in any of the Krylov
iterative algorithms.

4.6.1 Problem-defining function

The user must provide a function of type KINSysFn defined as follows:

KINSysFn

Definition typedef int (*KINSysFn)(N Vector u, N Vector fval, void *user data);

Purpose This function computes F (u) (or G(u) for fixed-point iteration and Anderson accelera-
tion) for a given value of the vector u.

Arguments u is the current value of the variable vector, u.

fval is the output vector F (u).

user data is a pointer to user data, the pointer user data passed to KINSetUserData.

54 Using KINSOL for C Applications

Return value A KINSysFn function should return 0 if successful, a positive value if a recoverable error
occurred (in which case kinsol will attempt to correct), or a negative value if it failed
unrecoverably (in which case the solution process is halted and KIN SYSFUNC FAIL is
returned).

Notes Allocation of memory for fval is handled within kinsol.

4.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed to
by errfp (see KINSetErrFile), the user may provide a function of type KINErrHandlerFn to process
any such messages. The function type KINErrHandlerFn is defined as follows:

KINErrHandlerFn

Definition typedef void (*KINErrHandlerFn)(int error code, const char *module,

const char *function, char *msg,

void *eh data);

Purpose This function processes error and warning messages from kinsol and its sub-modules.

Arguments error code is the error code.

module is the name of the kinsol module reporting the error.

function is the name of the function in which the error occurred.

msg is the error message.

eh data is a pointer to user data, the same as the eh data parameter passed to
KINSetErrHandlerFn.

Return value A KINErrHandlerFn function has no return value.

Notes error code is negative for errors and positive (KIN WARNING) for warnings. If a function
that returns a pointer to memory encounters an error, it sets error code to 0.

4.6.3 Informational message handler function

As an alternative to the default behavior of directing informational (meaning non-error) messages
to the file pointed to by infofp (see KINSetInfoFile), the user may provide a function of type
KINInfoHandlerFn to process any such messages. The function type KINInfoHandlerFn is defined as
follows:

KINInfoHandlerFn

Definition typedef void (*KINInfoHandlerFn)(const char *module,

const char *function, char *msg,

void *ih data);

Purpose This function processes informational messages from kinsol and its sub-modules.

Arguments module is the name of the kinsol module reporting the information.

function is the name of the function reporting the information.

msg is the message.

ih data is a pointer to user data, the same as the ih data parameter passed to
KINSetInfoHandlerFn.

Return value A KINInfoHandlerFn function has no return value.

4.6.4 Jacobian construction (matrix-based linear solvers)

If a matrix-based linear solver module is used (i.e., a non-NULL sunmatrix object J was supplied to
KINSetLinearSolver), the user may provide a function of type KINLsJacFn defined as follows

4.6 User-supplied functions 55

KINLsJacFn

Definition typedef int (*KINLsJacFn)(N Vector u, N Vector fu,

SUNMatrix J, void *user data,

N Vector tmp1, N Vector tmp2);

Purpose This function computes the Jacobian matrix J(u) (or an approximation to it).

Arguments u is the current (unscaled) iterate.

fu is the current value of the vector F (u).

J is the output approximate Jacobian matrix, J = ∂F/∂u, of type SUNMatrix.

user data is a pointer to user data, the same as the user data parameter passed to
KINSetUserData.

tmp1

tmp2 are pointers to memory allocated for variables of type N Vector which can
be used by the KINJacFn function as temporary storage or work space.

Return value A function of type KINLsJacFn should return 0 if successful or a non-zero value other-
wise.

Notes Information regarding the structure of the specific sunmatrix structure (e.g. number
of rows, upper/lower bandwidth, sparsity type) may be obtained through using the
implementation-specific sunmatrix interface functions (see Chapter 7 for details).

Prior to calling the user-supplied Jacobian function, the Jacobian matrix J(u) is zeroed
out, so only nonzero elements need to be loaded into J.

If the user’s KINLsJacFn function uses difference quotient approximations, it may need
to access quantities not in the call list. These quantities may include the scale vectors
and the unit roundoff. To obtain the scale vectors, the user will need to add to user data

pointers to u scale and/or f scale as needed. The unit roundoff can be accessed as
UNIT ROUNDOFF defined in sundials types.h.

dense:
A user-supplied dense Jacobian function must load the N × N dense matrix J with
an approximation to the Jacobian matrix J(u) at the point (u). The accessor macros
SM ELEMENT D and SM COLUMN D allow the user to read and write dense matrix ele-
ments without making explicit references to the underlying representation of the sun-
matrix dense type. SM ELEMENT D(J, i, j) references the (i, j)-th element of the
dense matrix J (with i, j = 0 . . . N − 1). This macro is meant for small problems for
which efficiency of access is not a major concern. Thus, in terms of the indices m
and n ranging from 1 to N , the Jacobian element Jm,n can be set using the state-
ment SM ELEMENT D(J, m-1, n-1) = Jm,n. Alternatively, SM COLUMN D(J, j) returns
a pointer to the first element of the j-th column of J (with j = 0 . . . N − 1), and the
elements of the j-th column can then be accessed using ordinary array indexing. Con-
sequently, Jm,n can be loaded using the statements col n = SM COLUMN D(J, n-1);

col n[m-1] = Jm,n. For large problems, it is more efficient to use SM COLUMN D than to
use SM ELEMENT D. Note that both of these macros number rows and columns starting
from 0. The sunmatrix dense type and accessor macros are documented in §7.2.

banded:
A user-supplied banded Jacobian function must load the N × N banded matrix J with
an approximation to the Jacobian matrix J(u) at the point (u). The accessor macros
SM ELEMENT B, SM COLUMN B, and SM COLUMN ELEMENT B allow the user to read and write
banded matrix elements without making specific references to the underlying represen-
tation of the sunmatrix band type. SM ELEMENT B(J, i, j) references the (i, j)-th
element of the banded matrix J, counting from 0. This macro is meant for use in small
problems for which efficiency of access is not a major concern. Thus, in terms of the
indices m and n ranging from 1 to N with (m,n) within the band defined by mupper and

56 Using KINSOL for C Applications

mlower, the Jacobian element Jm,n can be loaded using the statement SM ELEMENT B(J,

m-1, n-1) = Jm,n. The elements within the band are those with -mupper ≤ m-n ≤
mlower. Alternatively, SM COLUMN B(J, j) returns a pointer to the diagonal element of
the j-th column of J, and if we assign this address to realtype *col j, then the i-th
element of the j-th column is given by SM COLUMN ELEMENT B(col j, i, j), count-
ing from 0. Thus, for (m,n) within the band, Jm,n can be loaded by setting col n

= SM COLUMN B(J, n-1); and SM COLUMN ELEMENT B(col n, m-1, n-1) = Jm,n. The
elements of the j-th column can also be accessed via ordinary array indexing, but this
approach requires knowledge of the underlying storage for a band matrix of type sun-
matrix band. The array col n can be indexed from −mupper to mlower. For large
problems, it is more efficient to use SM COLUMN B and SM COLUMN ELEMENT B than to
use the SM ELEMENT B macro. As in the dense case, these macros all number rows and
columns starting from 0. The sunmatrix band type and accessor macros are docu-
mented in §7.3.

sparse:
A user-supplied sparse Jacobian function must load the N × N compressed-sparse-column
or compressed-sparse-row matrix J with an approximation to the Jacobian matrix J(u)
at the point (u). Storage for J already exists on entry to this function, although the
user should ensure that sufficient space is allocated in J to hold the nonzero values
to be set; if the existing space is insufficient the user may reallocate the data and
index arrays as needed. The amount of allocated space in a sunmatrix sparse object
may be accessed using the macro SM NNZ S or the routine SUNSparseMatrix NNZ. The
sunmatrix sparse type and accessor macros are documented in §7.4.

The previous function type KINDlsJacFn is identical to KINLsJacFn, and may still be
used for backward-compatibility. However, this will be deprecated in future releases, so
we recommend that users transition to the new function type name soon.

4.6.5 Jacobian-vector product (matrix-free linear solvers)

If a matrix-free linear solver is to be used (i.e., a NULL-valued sunmatrix was supplied to
KINSetLinearSolver), the user may provide a function of type KINLsJacTimesVecFn in the following
form, to compute products Jv. If such a function is not supplied, the default is a difference quotient
approximation of these products.

KINLsJacTimesVecFn

Definition typedef int (*KINLsJacTimesVecFn)(N Vector v, N Vector Jv,

N Vector u, booleantype new u,

void *user data);

Purpose This jtimes function computes the product Jv (or an approximation to it).

Arguments v is the vector by which the Jacobian must be multiplied to the right.

Jv is the computed output vector.

u is the current value of the dependent variable vector.

new u is a flag, input from kinsol and possibly reset by the user’s jtimes function,
indicating whether the iterate vector u has been updated since the last call to
jtimes. This is useful if the jtimes function computes and saves Jacobian
data that depends on u for use in computing J(u)v. The input value of
new u is SUNTRUE following an update by kinsol, and in that case any saved
Jacobian data depending on u should be recomputed. The jtimes routine
should then set new u to SUNFALSE, so that on subsequent calls to jtimes

with the same u, the saved data can be reused.

user data is a pointer to user data, the same as the user data parameter passed to
KINSetUserData.

4.6 User-supplied functions 57

Return value The value returned by the Jacobian-times-vector function should be 0 if successful.
If a recoverable failure occurred, the return value should be positive. In this case,
kinsol will attempt to correct by calling the preconditioner setup function. If this
information is current, kinsol halts. If the Jacobian-times-vector function encounters
an unrecoverable error, it should return a negative value, prompting kinsol to halt.

Notes If a user-defined routine is not given, then an internal jtimes function, using a difference
quotient approximation, is used.

This function must return a value of J ∗ v that uses the current value of J , i.e. as
evaluated at the current u.

If the user’s KINLsJacTimesVecFn function uses difference quotient approximations,
it may need to access quantities not in the call list. These might include the scale
vectors and the unit roundoff. To obtain the scale vectors, the user will need to add to
user data pointers to u scale and/or f scale as needed. The unit roundoff can be
accessed as UNIT ROUNDOFF defined in sundials types.h.

The previous function type KINSpilsJacTimesVecFn is identical to KINLsJacTimesVecFn,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new function type name
soon.

4.6.6 Preconditioner solve (iterative linear solvers)

If a user-supplied preconditioner is to be used with a sunlinsol solver module, then the user must pro-
vide a function to solve the linear system Pz = r where P is the preconditioner matrix, approximating
(at least crudely) the system Jacobian J = ∂F/∂u. This function must be of type KINLsPrecSolveFn,
defined as follows:

KINLsPrecSolveFn

Definition typedef int (*KINLsPrecSolveFn)(N Vector u, N Vector uscale,

N Vector fval, N Vector fscale,

N Vector v, void *user data);

Purpose This function solves the preconditioning system Pz = r.

Arguments u is the current (unscaled) value of the iterate.

uscale is a vector containing diagonal elements of the scaling matrix for u.

fval is the vector F (u) evaluated at u.

fscale is a vector containing diagonal elements of the scaling matrix for fval.

v on input, v is set to the right-hand side vector of the linear system, r. On
output, v must contain the solution z of the linear system Pz = r.

user data is a pointer to user data, the same as the user data parameter passed to
the function KINSetUserData.

Return value The value to be returned by the preconditioner solve function is a flag indicating whether
it was successful. This value should be 0 if successful, positive for a recoverable error,
and negative for an unrecoverable error.

Notes If the preconditioner solve function fails recoverably and if the preconditioner informa-
tion (set by the preconditioner setup function) is out of date, kinsol attempts to correct
by calling the setup function. If the preconditioner data is current, kinsol halts.

The previous function type KINSpilsPrecSolveFn is identical to KINLsPrecSolveFn,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new function type name
soon.

58 Using KINSOL for C Applications

4.6.7 Preconditioner setup (iterative linear solvers)

If the user’s preconditioner requires that any Jacobian-related data be evaluated or preprocessed, then
this needs to be done in a user-supplied function of type KINLsPrecSetupFn, defined as follows:

KINLsPrecSetupFn

Definition typedef int (*KINLsPrecSetupFn)(N Vector u, N Vector uscale,

N Vector fval, N Vector fscale,

void *user data);

Purpose This function evaluates and/or preprocesses Jacobian-related data needed by the pre-
conditioner solve function.

Arguments u is the current (unscaled) value of the iterate.

uscale is a vector containing diagonal elements of the scaling matrix for u.

fval is the vector F (u) evaluated at u.

fscale is a vector containing diagonal elements of the scaling matrix for fval.

user data is a pointer to user data, the same as the user data parameter passed to
the function KINSetUserData.

Return value The value to be returned by the preconditioner setup function is a flag indicating
whether it was successful. This value should be 0 if successful, any other value re-
sulting in halting the kinsol solver.

Notes The user-supplied preconditioner setup subroutine should compute the right precondi-
tioner matrix P (stored in the memory block referenced by the user data pointer) used
to form the scaled preconditioned linear system

(DFJ(u)P−1D−1u) · (DuPx) = −DFF (u) ,

where Du and DF denote the diagonal scaling matrices whose diagonal elements are
stored in the vectors uscale and fscale, respectively.

The preconditioner setup routine will not be called prior to every call made to the
preconditioner solve function, but will instead be called only as often as necessary to
achieve convergence of the Newton iteration.

If the user’s KINLsPrecSetupFn function uses difference quotient approximations, it may
need to access quantities not in the call list. These might include the scale vectors and
the unit roundoff. To obtain the scale vectors, the user will need to add to user data

pointers to u scale and/or f scale as needed. The unit roundoff can be accessed as
UNIT ROUNDOFF defined in sundials types.h.

If the preconditioner solve routine requires no preparation, then a preconditioner setup
function need not be given.

The previous function type KINSpilsPrecSetupFn is identical to KINLsPrecSetupFn,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new function type name
soon.

4.7 A parallel band-block-diagonal preconditioner module

The efficiency of Krylov iterative methods for the solution of linear systems can be greatly enhanced
through preconditioning. For problems in which the user cannot define a more effective, problem-
specific preconditioner, kinsol provides a band-block-diagonal preconditioner module kinbbdpre, to
be used with the parallel N Vector module described in §6.3.

This module provides a preconditioner matrix for kinsol that is block-diagonal with banded
blocks. The blocking corresponds to the distribution of the dependent variable vector u amongst the

4.7 A parallel band-block-diagonal preconditioner module 59

processes. Each preconditioner block is generated from the Jacobian of the local part (associated with
the current process) of a given function G(u) approximating F (u) (G = F is allowed). The blocks
are generated by each process via a difference quotient scheme, utilizing a specified band structure.
This structure is given by upper and lower half-bandwidths, mudq and mldq, defined as the number
of non-zero diagonals above and below the main diagonal, respectively. However, from the resulting
approximate Jacobain blocks, only a matrix of bandwidth mukeep + mlkeep +1 is retained.

Neither pair of parameters need be the true half-bandwidths of the Jacobian of the local block of
G, if smaller values provide a more efficient preconditioner. Such an efficiency gain may occur if the
couplings in the system outside a certain bandwidth are considerably weaker than those within the
band. Reducing mukeep and mlkeep while keeping mudq and mldq at their true values, discards the
elements outside the narrower band. Reducing both pairs has the additional effect of lumping the
outer Jacobian elements into the computed elements within the band, and requires more caution and
experimentation to see whether the lower cost of narrower band matrices offsets the loss of accuracy
in the blocks.

The kinbbdpre module calls two user-provided functions to construct P : a required function
Gloc (of type KINBBDLocalFn) which approximates the nonlinear system function G(u) ≈ F (u) and
which is computed locally, and an optional function Gcomm (of type KINBBDCommFn) which performs all
interprocess communication necessary to evaluate the approximate function G. These are in addition
to the user-supplied nonlinear system function that evaluates F (u). Both functions take as input
the same pointer user data as that passed by the user to KINSetUserData and passed to the user’s
function func, and neither function has a return value. The user is responsible for providing space
(presumably within user data) for components of u that are communicated by Gcomm from the other
processes, and that are then used by Gloc, which should not do any communication.

KINBBDLocalFn

Definition typedef int (*KINBBDLocalFn)(sunindextype Nlocal, N Vector u,

N Vector gval, void *user data);

Purpose This Gloc function computes G(u), and outputs the resulting vector as gval.

Arguments Nlocal is the local vector length.

u is the current value of the iterate.

gval is the output vector.

user data is a pointer to user data, the same as the user data parameter passed to
KINSetUserData.

Return value A KINBBDLocalFn function should return 0 if successful or a non-zero value if an error
occured.

Notes This function must assume that all interprocess communication of data needed to cal-
culate gval has already been done, and this data is accessible within user data.

Memory for u and gval is handled within the preconditioner module.

The case where G is mathematically identical to F is allowed.

KINBBDCommFn

Definition typedef int (*KINBBDCommFn)(sunindextype Nlocal, N Vector u,

void *user data);

Purpose This Gcomm function performs all interprocess communications necessary for the execu-
tion of the Gloc function above, using the input vector u.

Arguments Nlocal is the local vector length.

u is the current value of the iterate.

user data is a pointer to user data, the same as the user data parameter passed to
KINSetUserData.

60 Using KINSOL for C Applications

Return value A KINBBDCommFn function should return 0 if successful or a non-zero value if an error
occured.

Notes The Gcomm function is expected to save communicated data in space defined within the
structure user data.

Each call to the Gcomm function is preceded by a call to the system function func with
the same u argument. Thus Gcomm can omit any communications done by func if
relevant to the evaluation of Gloc. If all necessary communication was done in func,
then Gcomm = NULL can be passed in the call to KINBBDPrecInit (see below).

Besides the header files required for the solution of a nonlinear problem (see §4.3), to use the
kinbbdpre module, the main program must include the header file kinbbdpre.h which declares the
needed function prototypes.

The following is a summary of the usage of this module and describes the sequence of calls in
the user main program. Steps that are unchanged from the user main program presented in §4.4 are
grayed out.

1. Initialize parallel or multi-threaded environment

2. Set problem dimensions, etc.

3. Set vector with initial guess

4. Create kinsol object

5. Allocate internal memory

6. Create linear solver object

When creating the iterative linear solver object, specify use of right preconditioning (PREC RIGHT)
as kinsol only supports right preconditioning.

7. Attach linear solver module

8. Initialize the kinbbdpre preconditioner module

Specify the upper and lower half-bandwidth pairs (mudq, mldq) and (mukeep, mlkeep), and call

flag = KINBBDPrecInit(kin mem, Nlocal, mudq, mldq,

mukeep, mlkeep, dq rel u, Gloc, Gcomm);

to allocate memory for and initialize the internal preconditoner data. The last two arguments of
KINBBDPrecInit are the two user-supplied functions described above.

9. Set optional inputs

Note that the user should not overwrite the preconditioner data, setup function, or solve function
through calls to KINSetPreconditioner optional input functions.

10. Solve problem

11. Get optional output

Additional optional outputs associated with kinbbdpre are available by way of two routines
described below, KINBBDPrecGetWorkSpace and KINBBDPrecGetNumGfnEvals.

12. Deallocate memory for solution vector

13. Free solver memory

14. Free linear solver memory

15. Finalize MPI, if used

The user-callable function that initializes kinbbdpre (step 8), is described in more detail below.

4.7 A parallel band-block-diagonal preconditioner module 61

KINBBDPrecInit

Call flag = KINBBDPrecInit(kin mem, Nlocal, mudq, mldq,

mukeep, mlkeep, dq rel u, Gloc, Gcomm);

Description The function KINBBDPrecInit initializes and allocates memory for the kinbbdpre pre-
conditioner.

Arguments kin mem (void *) pointer to the kinsol memory block.

Nlocal (sunindextype) local vector length.

mudq (sunindextype) upper half-bandwidth to be used in the difference-quotient
Jacobian approximation.

mldq (sunindextype) lower half-bandwidth to be used in the difference-quotient
Jacobian approximation.

mukeep (sunindextype) upper half-bandwidth of the retained banded approximate
Jacobian block.

mlkeep (sunindextype) lower half-bandwidth of the retained banded approximate
Jacobian block.

dq rel u (realtype) the relative increment in components of u used in the difference
quotient approximations. The default is dq rel u=

√
unit roundoff, which

can be specified by passing dq rel u= 0.0.

Gloc (KINBBDLocalFn) the C function which computes the approximation G(u) ≈
F (u).

Gcomm (KINBBDCommFn) the optional C function which performs all interprocess com-
munication required for the computation of G(u).

Return value The return value flag (of type int) is one of

KINLS SUCCESS The call to KINBBDPrecInit was successful.

KINLS MEM NULL The kin mem pointer was NULL.

KINLS MEM FAIL A memory allocation request has failed.

KINLS LMEM NULL The kinls linear solver interface has not been initialized.

KINLS ILL INPUT The supplied vector implementation was not compatible with the
block band preconditioner.

Notes If one of the half-bandwidths mudq or mldq to be used in the difference-quotient cal-
culation of the approximate Jacobian is negative or exceeds the value Nlocal−1, it is
replaced with 0 or Nlocal−1 accordingly.

The half-bandwidths mudq and mldq need not be the true half-bandwidths of the Jaco-
bian of the local block of G, when smaller values may provide greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate
Jacobian block may be even smaller, to reduce storage and computation costs further.

For all four half-bandwidths, the values need not be the same for every process.

The following two optional output functions are available for use with the kinbbdpre module:

KINBBDPrecGetWorkSpace

Call flag = KINBBDPrecGetWorkSpace(kin mem, &lenrwBBDP, &leniwBBDP);

Description The function KINBBDPrecGetWorkSpace returns the local kinbbdpre real and integer
workspace sizes.

Arguments kin mem (void *) pointer to the kinsol memory block.

lenrwBBDP (long int) local number of realtype values in the kinbbdpre workspace.

leniwBBDP (long int) local number of integer values in the kinbbdpre workspace.

Return value The return value flag (of type int) is one of:

62 Using KINSOL for C Applications

KINLS SUCCESS The optional output value has been successfully set.

KINLS MEM NULL The kin mem pointer was NULL.

KINLS PMEM NULL The kinbbdpre preconditioner has not been initialized.

Notes The workspace requirements reported by this routine correspond only to memory allo-
cated within the kinbbdpre module (the banded matrix approximation, banded sun-
linsol object, temporary vectors). These values are local to each process.

The workspaces referred to here exist in addition to those given by the corresponding
KINGetLinWorkSpace function.

KINBBDPrecGetNumGfnEvals

Call flag = KINBBDPrecGetNumGfnEvals(kin mem, &ngevalsBBDP);

Description The function KINBBDPrecGetNumGfnEvals returns the number of calls to the user Gloc
function due to the difference quotient approximation of the Jacobian blocks used within
kinbbdpre’s preconditioner setup function.

Arguments kin mem (void *) pointer to the kinsol memory block.

ngevalsBBDP (long int) the number of calls to the user Gloc function.

Return value The return value flag (of type int) is one of:

KINLS SUCCESS The optional output value has been successfully set.

KINLS MEM NULL The kin mem pointer was NULL.

KINLS PMEM NULL The kinbbdpre preconditioner has not been initialized.

In addition to the ngevalsBBDP Gloc evaluations, the costs associated with kinbbdpre also include
nlinsetups LU factorizations, nlinsetups calls to Gcomm, npsolves banded backsolve calls, and
nfevalsLS right-hand side function evaluations, where nlinsetups is an optional kinsol output and
npsolves and nfevalsLS are linear solver optional outputs (see §4.5.5).

Chapter 5

FKINSOL, an Interface Module for
FORTRAN Applications

The fkinsol interface module is a package of C functions which support the use of the kinsol solver,
for the solution of nonlinear systems F (u) = 0, in a mixed Fortran/C setting. While kinsol is
written in C, it is assumed here that the user’s calling program and user-supplied problem-defining
routines are written in Fortran. This package provides the necessary interface to kinsol for all
supplied serial and parallel nvector implementations.

5.1 Important note on portability

In this package, the names of the interface functions, and the names of the Fortran user routines
called by them, appear as dummy names which are mapped to actual values by a series of definitions
in the header files. By default, those mapping definitions depend in turn on the C macro F77 FUNC

defined in the header file sundials config.h. The mapping defined by F77 FUNC in turn transforms
the C interface names to match the name-mangling approach used by the supplied Fortran compiler.

By “name-mangling”, we mean that due to the case-independent nature of the Fortran language,
Fortran compilers convert all subroutine and object names to use either all lower-case or all upper-
case characters, and append either zero, one or two underscores as a prefix or suffix to the name. For
example, the Fortran subroutine MyFunction() will be changed to one of myfunction, MYFUNCTION,
myfunction , MYFUNCTION , and so on, depending on the Fortran compiler used.

sundials determines this name-mangling scheme at configuration time (see Appendix A).

5.2 Fortran Data Types

Throughout this documentation, we will refer to data types according to their usage in C. The equiv-
alent types to these may vary, depending on your computer architecture and on how SUNDIALS was
compiled (see Appendix A). A Fortran user should first determine the equivalent types for their
architecture and compiler, and then take care that all arguments passed through this Fortran/C
interface are declared of the appropriate type.

Integers: While sundials uses the configurable sunindextype type as the integer type for vector
and matrix indices for its C code, the Fortran interfaces are more restricted. The sunindextype

is only used for index values and pointers when filling sparse matrices. As for C, the sunindextype

can be configured to be a 32- or 64-bit signed integer by setting the variable SUNDIALS INDEX TYPE

at compile time (See Appendix A). The default value is int64 t. A Fortran user should set this
variable based on the integer type used for vector and matrix indices in their Fortran code. The
corresponding Fortran types are:

• int32 t – equivalent to an INTEGER or INTEGER*4 in Fortran

64 FKINSOL, an Interface Module for FORTRAN Applications

• int64 t – equivalent to an INTEGER*8 in Fortran

In general, for the Fortran interfaces in sundials, flags of type int, vector and matrix lengths,
counters, and arguments to *SETIN() functions all have long int type, and sunindextype is only
used for index values and pointers when filling sparse matrices. Note that if an F90 (or higher) user
wants to find out the value of sunindextype, they can include sundials fconfig.h.

Real numbers: As discussed in Appendix A, at compilation sundials allows the configura-
tion option SUNDIALS PRECISION, that accepts values of single, double or extended (the default is
double). This choice dictates the size of a realtype variable. The corresponding Fortran types for
these realtype sizes are:

• single – equivalent to a REAL or REAL*4 in Fortran

• double – equivalent to a DOUBLE PRECISION or REAL*8 in Fortran

• extended – equivalent to a REAL*16 in Fortran

5.3 FKINSOL routines

The user-callable functions, with the corresponding kinsol functions, are as follows:

• Interface to the nvector modules

– FNVINITS (defined by nvector serial) interfaces to N VNewEmpty Serial.

– FNVINITP (defined by nvector parallel) interfaces to N VNewEmpty Parallel.

– FNVINITOMP (defined by nvector openmp) interfaces to N VNewEmpty OpenMP.

– FNVINITPTS (defined by nvector pthreads) interfaces to N VNewEmpty Pthreads.

• Interface to the sunmatrix modules

– FSUNBANDMATINIT (defined by sunmatrix band) interfaces to SUNBandMatrix.

– FSUNDENSEMATINIT (defined by sunmatrix dense) interfaces to SUNDenseMatrix.

– FSUNSPARSEMATINIT (defined by sunmatrix sparse) interfaces to SUNSparseMatrix.

• Interface to the sunlinsol modules

– FSUNBANDLINSOLINIT (defined by sunlinsol band) interfaces to SUNLinSol Band.

– FSUNDENSELINSOLINIT (defined by sunlinsol dense) interfaces to SUNLinSol Dense.

– FSUNKLUINIT (defined by sunlinsol klu) interfaces to SUNLinSol KLU.

– FSUNKLUREINIT (defined by sunlinsol klu) interfaces to SUNLinSol KLUReinit.

– FSUNLAPACKBANDINIT (defined by sunlinsol lapackband) interfaces to SUNLinSol LapackBand.

– FSUNLAPACKDENSEINIT (defined by sunlinsol lapackdense) interfaces to SUNLinSol LapackDense.

– FSUNPCGINIT (defined by sunlinsol pcg) interfaces to SUNLinSol PCG.

– FSUNSPBCGSINIT (defined by sunlinsol spbcgs) interfaces to SUNLinSol SPBCGS.

– FSUNSPFGMRINIT (defined by sunlinsol spfgmr) interfaces to SUNLinSol SPFGMR.

– FSUNSPGMRINIT (defined by sunlinsol spgmr) interfaces to SUNLinSol SPGMR.

– FSUNSPTFQMRINIT (defined by sunlinsol sptfqmr) interfaces to SUNLinSol SPTFQMR.

– FSUNSUPERLUMTINIT (defined by sunlinsol superlumt) interfaces to SUNLinSol SuperLUMT.

• Interface to the main kinsol module

– FKINCREATE interfaces to KINCreate.

5.4 Usage of the FKINSOL interface module 65

– FKINSETIIN and FKINSETRIN interface to KINSet* functions.

– FKININIT interfaces to KINInit.

– FKINSETVIN interfaces to KINSetConstraints.

– FKINSOL interfaces to KINSol, KINGet* functions, and to the optional output functions for
the selected linear solver module.

– FKINFREE interfaces to KINFree.

• Interface to the kinls module

– FKINLSINIT interfaces to KINSetLinearSolver.

– FKINLSSETJAC interfaces to KINSetJacTimesVecFn.

– FKINLSSETPREC interfaces to KINSetPreconditioner.

– FKINDENSESETJAC interfaces to KINSetJacFn.

– FKINBANDSETJAC interfaces to KINSetJacFn.

– FKINSPARSESETJAC interfaces to KINSetJacFn.

The user-supplied functions, each listed with the corresponding internal interface function which
calls it (and its type within kinsol), are as follows:

fkinsol routine kinsol function kinsol type of
(Fortran, user-supplied) (C, interface) interface function

FKFUN FKINfunc KINSysFn

FKDJAC FKINDenseJac KINLsJacFn

FKBJAC FKINBandJac KINLsJacFn

FKINSPJAC FKINSparseJac KINLsJacFn

FKPSET FKINPSet KINLsPrecSetupFn

FKPSOL FKINPSol KINLsPrecSolveFn

FKJTIMES FKINJtimes KINLsJacTimesVecFn

In contrast to the case of direct use of kinsol, the names of all user-supplied routines here are fixed,
in order to maximize portability for the resulting mixed-language program.

5.4 Usage of the FKINSOL interface module

The usage of fkinsol requires calls to a few different interface functions, depending on the method
options selected, and one or more user-supplied routines which define the problem to be solved. These
function calls and user routines are summarized separately below. Some details are omitted, and
the user is referred to the description of the corresponding kinsol functions for information on the
arguments of any given user-callable interface routine, or of a given user-supplied function called by
an interface function.

1. Nonlinear system function specification

The user must, in all cases, supply the following Fortran routine

SUBROUTINE FKFUN (U, FVAL, IER)

DIMENSION U(*), FVAL(*)

It must set the FVAL array to F (u), the system function, as a function of U = u. IER is an error
return flag which should be set to 0 if successful, a positive value if a recoverable error occurred
(in which case kinsol will attempt to correct), or a negative value if it failed unrecoverably (in
which case the solution process is halted).

66 FKINSOL, an Interface Module for FORTRAN Applications

2. nvector module initialization

If using one of the nvector modules supplied with sundials, the user must make a call of the
form

CALL FNVINIT***(...)

in which the name and call sequence are as described in the appropriate section of Chapter 6.

3. sunmatrix module initialization

If using a Newton or Picard iteration with a matrix-based sunlinsol linear solver module and
one of the sunmatrix modules supplied with sundials, the user must make a call of the form

CALL FSUN***MATINIT(...)

in which the name and call sequence are as described in the appropriate section of Chapter 7.
Note that the dense, band, or sparse matrix options are usable only in a serial or multi-threaded
environment.

4. sunlinsol module initialization

If using a Newton or Picard iteration with one of the sunlinsol linear solver modules supplied
with sundials, the user must make a call of the form

CALL FSUNBANDLINSOLINIT(...)

CALL FSUNDENSELINSOLINIT(...)

CALL FSUNKLUINIT(...)

CALL FSUNLAPACKBANDINIT(...)

CALL FSUNLAPACKDENSEINIT(...)

CALL FSUNPCGINIT(...)

CALL FSUNSPBCGSINIT(...)

CALL FSUNSPFGMRINIT(...)

CALL FSUNSPGMRINIT(...)

CALL FSUNSPTFQMRINIT(...)

CALL FSUNSUPERLUMTINIT(...)

in which the call sequence is as described in the appropriate section of Chapter 8. Note that the
dense, band, or sparse solvers are usable only in a serial or multi-threaded environment.

Once one of these solvers has been initialized, its solver parameters may be modified using a call
to the functions

CALL FSUNKLUSETORDERING(...)

CALL FSUNSUPERLUMTSETORDERING(...)

CALL FSUNPCGSETPRECTYPE(...)

CALL FSUNPCGSETMAXL(...)

CALL FSUNSPBCGSSETPRECTYPE(...)

CALL FSUNSPBCGSSETMAXL(...)

CALL FSUNSPFGMRSETGSTYPE(...)

CALL FSUNSPFGMRSETPRECTYPE(...)

CALL FSUNSPGMRSETGSTYPE(...)

CALL FSUNSPGMRSETPRECTYPE(...)

CALL FSUNSPTFQMRSETPRECTYPE(...)

CALL FSUNSPTFQMRSETMAXL(...)

where again the call sequences are described in the appropriate sections of Chapter 8.

5.4 Usage of the FKINSOL interface module 67

5. Problem specification

To create the main solver memory block, make the following call:

FKINCREATE

Call CALL FKINCREATE (IER)

Description This function creates the kinsol memory structure.

Arguments None.

Return value IER is the return completion flag. Values are 0 for successful return and −1 other-
wise. See printed message for details in case of failure.

Notes

6. Set optional inputs

Call FKINSETIIN, FKINSETRIN, and/or FKINSETVIN, to set desired optional inputs, if any. See §5.5
for details.

7. Solver Initialization

To set various problem and solution parameters and allocate internal memory, make the following
call:

FKININIT

Call CALL FKININIT (IOUT, ROUT, IER)

Description This function specifies the optional output arrays, allocates internal memory, and
initializes kinsol.

Arguments IOUT is an integer array for integer optional outputs.
ROUT is a real array for real optional outputs.

Return value IER is the return completion flag. Values are 0 for successful return and −1 other-
wise. See printed message for details in case of failure.

Notes The user integer data array IOUT must be declared as INTEGER*4 or INTEGER*8

according to the C type long int.

The optional outputs associated with the main kinsol integrator are listed in Ta-
ble 5.2.

8. Linear solver interface specification

The Newton and Picard solution methods in kinsol involve the solution of linear systems related
to the Jacobian of the nonlinear system. To attach the linear solver (and optionally the matrix)
objects initialized in steps 3 and 4 above, the user of fkinsol must initialize the kinls linear
solver interface.

To attach any sunlinsol object (and optional sunmatrix object) to the kinls interface, then
following calls to initialize the sunlinsol (and sunmatrix) object(s) in steps 3 and 4 above, the
user must make the call:

CALL FKINLSINIT (IER)

where IER is an error return flag which is 0 for success or −1 if a memory allocation failure
occurred.

The previous routines FKINDLSINIT and FKINSPILSINIT are now wrappers for this routine, and
may still be used for backward-compatibility. However, these will be deprecated in future releases,
so we recommend that users transition to the new routine name soon.

68 FKINSOL, an Interface Module for FORTRAN Applications

kinls with dense Jacobian matrix

As an option when using the kinls interface with the sunlinsol dense or sunlinsol lapackdense
linear solvers, the user may supply a routine that computes a dense approximation of the system
Jacobian J = ∂F/∂u. If supplied, it must have the following form:

SUBROUTINE FKDJAC (NEQ, U, FVAL, DJAC, WK1, WK2, IER)

DIMENSION U(*), FVAL(*), DJAC(NEQ,*), WK1(*), WK2(*)

Typically this routine will use only NEQ, U, and DJAC. It must compute the Jacobian and store it
columnwise in DJAC. The input arguments U and FVAL contain the current values of u and F (u),
respectively. The vectors WK1 and WK2, of length NEQ, are provided as work space for use in FKDJAC.
IER is an error return flag which should be set to 0 if successful, a positive value if a recoverable
error occurred (in which case kinsol will attempt to correct), or a negative value if FKDJAC failed
unrecoverably (in which case the solution process is halted). NOTE: The argument NEQ has a
type consistent with C type long int even in the case when the LAPACK dense solver is to be
used.

If the FKDJAC routine is provided, then, following the call to FKINLSINIT, the user must make the
call:

CALL FKINDENSESETJAC (FLAG, IER)

with FLAG 6= 0 to specify use of the user-supplied Jacobian approximation. The argument IER is
an error return flag which is 0 for success or non-zero if an error occurred.

kinls with band Jacobian matrix

As an option when using the kinls interface with the sunlinsol band or sunlinsol lapackband
linear solvers, the user may supply a routine that computes a band approximation of the system
Jacobian J = ∂F/∂u. If supplied, it must have the following form:

SUBROUTINE FKBJAC (NEQ, MU, ML, MDIM, U, FVAL, BJAC, WK1, WK2, IER)

DIMENSION U(*), FVAL(*), BJAC(MDIM,*), WK1(*), WK2(*)

Typically this routine will use only NEQ, MU, ML, U, and BJAC. It must load the MDIM by N array BJAC

with the Jacobian matrix at the current u in band form. Store in BJAC(k, j) the Jacobian element
Ji,j with k = i− j+ MU +1 (k = 1 · · · ML + MU + 1) and j = 1 · · ·N . The input arguments U and
FVAL contain the current values of u, and F (u), respectively. The vectors WK1 and WK2 of length
NEQ are provided as work space for use in FKBJAC. IER is an error return flag, which should be
set to 0 if successful, a positive value if a recoverable error occurred (in which case kinsol will
attempt to correct), or a negative value if FKBJAC failed unrecoverably (in which case the solution
process is halted). NOTE: The arguments NEQ, MU, ML, and MDIM have a type consistent with C
type long int even in the case when the LAPACK band solver is to be used.

If the FKBJAC routine is provided, then, following the call to FKINLSINIT, the user must make the
call:

CALL FKINBANDSETJAC (FLAG, IER)

with FLAG 6= 0 to specify use of the user-supplied Jacobian approximation. The argument IER is
an error return flag which is 0 for success or non-zero if an error occurred.

kinls with sparse Jacobian matrix

When using the kinls interface with either of the sunlinsol klu or sunlinsol superlumt
linear solvers, the user must supply the FKINSPJAC routine that computes a compressed-sparse-
column or compressed-sparse-row approximation of the system Jacobian J = ∂F/∂u. If supplied,
it must have the following form:

5.4 Usage of the FKINSOL interface module 69

SUBROUTINE FKINSPJAC(Y, FY, N, NNZ, JDATA, JINDEXVALS,

& JINDEXPTRS, WK1, WK2, IER)

Typically this routine will use only N, NNZ, JDATA, JINDEXVALS and JINDEXPTRS. It must load
the N by N compressed sparse column [or compressed sparse row] matrix with storage for NNZ

nonzeros, stored in the arrays JDATA (nonzero values), JINDEXVALS (row [or column] indices for
each nonzero), JINDEXPTRS (indices for start of each column [or row]), with the Jacobian matrix
at the current (y) in CSC [or CSR] form (see sunmatrix sparse.h for more information). The
arguments are Y, an array containing state variables; FY, an array containing residual values; N,
the number of matrix rows/columns in the Jacobian; NNZ, allocated length of nonzero storage;
JDATA, nonzero values in the Jacobian (of length NNZ); JINDEXVALS, row [or column] indices for
each nonzero in Jacobian (of length NNZ); JINDEXPTRS, pointers to each Jacobian column [or row]
in the two preceding arrays (of length N+1); WK*, work arrays containing temporary workspace of
same size as Y; and IER, error return code (0 if successful, > 0 if a recoverable error occurred, or
< 0 if an unrecoverable error occurred.)

To indicate that the FKINSPJAC routine has been provided, then following the call to FKINLSINIT,
the following call must be made

CALL FKINSPARSESETJAC (IER)

The int return flag IER is an error return flag which is 0 for success or nonzero for an error.

kinls with Jacobian-vector product

As an option when using the kinls linear solver interface, the user may supply a routine that
computes the product of the system Jacobian and a given vector. If supplied, it must have the
following form:

SUBROUTINE FKINJTIMES (V, FJV, NEWU, U, IER)

DIMENSION V(*), FJV(*), U(*)

Typically this routine will use only U, V, and FJV. It must compute the product vector Jv, where
the vector v is stored in V, and store the product in FJV. The input argument U contains the
current value of u. On return, set IER = 0 if FKINJTIMES was successful, and nonzero otherwise.
NEWU is a flag to indicate if U has been changed since the last call; if it has, then NEWU = 1, and
FKINJTIMES should recompute any saved Jacobian data it uses and reset NEWU to 0. (See §4.6.5.)

To indicate that the FKINJTIMES routine has been provided, then following the call to FKINLSINIT,
the following call must be made

CALL FKINLSSETJAC (FLAG, IER)

with FLAG 6= 0 to specify use of the user-supplied Jacobian-times-vector approximation. The
argument IER is an error return flag which is 0 for success or non-zero if an error occurred.

The previous routine FKINSPILSETJAC is now a wrapper for this routine, and may still be used
for backward-compatibility. However, this will be deprecated in future releases, so we recommend
that users transition to the new routine name soon.

kinls with preconditioning

If user-supplied preconditioning is to be included, the following routine must be supplied, for
solution of the preconditioner linear system:

SUBROUTINE FKPSOL (U, USCALE, FVAL, FSCALE, VTEM, IER)

DIMENSION U(*), USCALE(*), FVAL(*), FSCALE(*), VTEM(*)

70 FKINSOL, an Interface Module for FORTRAN Applications

Typically this routine will use only U, FVAL, and VTEM It must solve the preconditioned linear
system Pz = r, where r = VTEM is input, and store the solution z in VTEM as well. Here P is the
right preconditioner. If scaling is being used, the routine supplied must also account for scaling
on either coordinate or function value, as given in the arrays USCALE and FSCALE, respectively.

If the user’s preconditioner requires that any Jacobian-related data be evaluated or preprocessed,
then the following routine can be used for the evaluation and preprocessing of the preconditioner:

SUBROUTINE FKPSET (U, USCALE, FVAL, FSCALE, IER)

DIMENSION U(*), USCALE(*), FVAL(*), FSCALE(*)

It must perform any evaluation of Jacobian-related data and preprocessing needed for the solution
of the preconditioned linear systems by FKPSOL. The variables U through FSCALE are for use in the
preconditioning setup process. Typically, the system function FKFUN is called before any calls to
FKPSET, so that FVAL will have been updated. U is the current solution iterate. If scaling is being
used, USCALE and FSCALE are available for those operations requiring scaling.

On return, set IER = 0 if FKPSET was successful, or set IER = 1 if an error occurred.

To indicate that the FKINPSET and FKINPSOL routines are supplied, then the user must call

CALL FKINLSSETPREC (FLAG, IER)

with FLAG 6= 0. The return flag IER is 0 if successful, or negative if a memory error occurred. In
addition, the user program must include preconditioner routines FKPSOL and FKPSET (see below).

The previous routine FKINSPILSETPREC is now a wrapper for this routine, and may still be used
for backward-compatibility. However, this will be deprecated in future releases, so we recommend
that users transition to the new routine name soon.

If the user calls FKINLSSETPREC, the routine FKPSET must be provided, even if it is not needed,!

and then it should return IER = 0.

9. Problem solution

Solving the nonlinear system is accomplished by making the following call:

CALL FKINSOL (U, GLOBALSTRAT, USCALE, FSCALE, IER)

The arguments are as follows. U is an array containing the initial guess on input, and the solution
on return. GLOBALSTRAT is an integer (type INTEGER) defining the global strategy choice (0 specifies
Inexact Newton, 1 indicates Newton with line search, 2 indicates Picard iteration, and 3 indicates
Fixed Point iteration). USCALE is an array of scaling factors for the U vector. FSCALE is an array
of scaling factors for the FVAL vector. IER is an integer completion flag and will have one of the
following values: 0 to indicate success, 1 to indicate that the initial guess satisfies F (u) = 0 within
tolerances, 2 to indicate apparent stalling (small step), or a negative value to indicate an error or
failure. These values correspond to the KINSol returns (see §4.5.3 and §B.2). The values of the
optional outputs are available in IOPT and ROPT (see Table 5.2).

10. Memory deallocation

To free the internal memory created by calls to FKINCREATE, FKININIT, FNVINIT*, FKINLSINIT,
and FSUN***MATINIT, make the call

CALL FKINFREE

5.5 FKINSOL optional input and output 71

Table 5.1: Keys for setting fkinsol optional inputs

Integer optional inputs FKINSETIIN

Key Optional input Default value
PRNT LEVEL Verbosity level of output 0

MAA Number of prior residuals for Anderson Acceleration 0
MAX NITERS Maximum no. of nonlinear iterations 200
ETA FORM Form of η coefficient 1 (KIN ETACHOICE1)

MAX SETUPS Maximum no. of iterations without prec. setup 10
MAX SP SETUPS Maximum no. of iterations without residual check 5
NO INIT SETUP No initial preconditioner setup SUNFALSE

NO MIN EPS Lower bound on ε SUNFALSE

NO RES MON No residual monitoring SUNFALSE

Real optional inputs (FKINSETRIN)
Key Optional input Default value

FNORM TOL Function-norm stopping tolerance uround1/3

SSTEP TOL Scaled-step stopping tolerance uround2/3

MAX STEP Max. scaled length of Newton step 1000‖Duu0‖2
RERR FUNC Relative error for F.D. Jv

√
uround

ETA CONST Constant value of η 0.1
ETA PARAMS Values of γ and α 0.9 and 2.0
RMON CONST Constant value of ω 0.9
RMON PARAMS Values of ωmin and ωmax 0.00001 and 0.9

5.5 FKINSOL optional input and output

In order to keep the number of user-callable fkinsol interface routines to a minimum, optional inputs
to the kinsol solver are passed through only three routines: FKINSETIIN for integer optional inputs,
FKINSETRIN for real optional inputs, and FKINSETVIN for real vector (array) optional inputs. These
functions should be called as follows:

CALL FKINSETIIN (KEY, IVAL, IER)

CALL FKINSETRIN (KEY, RVAL, IER)

CALL FKINSETVIN (KEY, VVAL, IER)

where KEY is a quoted string indicating which optional input is set, IVAL is the integer input value to
be used, RVAL is the real input value to be used, and VVAL is the input real array to be used. IER is
an integer return flag which is set to 0 on success and a negative value if a failure occurred. For the
legal values of KEY in calls to FKINSETIIN and FKINSETRIN, see Table 5.1. The one legal value of KEY
for FKINSETVIN is CONSTR VEC, for providing the array of inequality constraints to be imposed on the
solution, if any. The integer IVAL should be declared in a manner consistent with C type long int.

The optional outputs from the kinsol solver are accessed not through individual functions, but
rather through a pair of arrays, IOUT (integer type) of dimension at least 15, and ROUT (real type) of
dimension at least 2. These arrays are owned (and allocated) by the user and are passed as arguments
to FKININIT. Table 5.2 lists the entries in these two arrays and specifies the optional variable as well
as the kinsol function which is actually called to extract the optional output.

For more details on the optional inputs and outputs, see §4.5.4 and §4.5.5.

5.6 Usage of the FKINBBD interface to KINBBDPRE

The fkinbbd interface sub-module is a package of C functions which, as part of the fkinsol interface
module, support the use of the kinsol solver with the parallel nvector parallel module and

72 FKINSOL, an Interface Module for FORTRAN Applications

Table 5.2: Description of the fkinsol optional output arrays IOUT and ROUT

Integer output array IOUT

Index Optional output kinsol function
kinsol main solver

1 LENRW KINGetWorkSpace

2 LENIW KINGetWorkSpace

3 NNI KINGetNumNonlinSolvIters

4 NFE KINGetNumFuncEvals

5 NBCF KINGetNumBetaCondFails

6 NBKTRK KINGetNumBacktrackOps

kinls linear solver interface
7 LENRWLS KINGetLinWorkSpace

8 LENIWLS KINGetLinWorkSpace

9 LS FLAG KINGetLastLinFlag

10 NFELS KINGetNumLinFuncEvals

11 NJE KINGetNumJacEvals

12 NJTV KINGetNumJtimesEvals

13 NPE KINGetNumPrecEvals

14 NPS KINGetNumPrecSolves

15 NLI KINGetNumLinIters

16 NCFL KINGetNumLinConvFails

Real output array ROUT

Index Optional output kinsol function
1 FNORM KINGetFuncNorm

2 SSTEP KINGetStepLength

5.6 Usage of the FKINBBD interface to KINBBDPRE 73

the kinbbdpre preconditioner module (see §4.7), for the solution of nonlinear problems in a mixed
Fortran/C setting.

The user-callable functions in this package, with the corresponding kinsol and kinbbdpre func-
tions, are as follows:

• FKINBBDINIT interfaces to KINBBDPrecInit.

• FKINBBDOPT interfaces to kinbbdpre optional output functions.

In addition to the Fortran right-hand side function FKFUN, the user-supplied functions used by
this package, are listed below, each with the corresponding interface function which calls it (and its
type within kinbbdpre or kinsol):

fkinbbd routine kinsol function kinsol type of
(Fortran, user-supplied) (C, interface) interface function

FKLOCFN FKINgloc KINBBDLocalFn

FKCOMMF FKINgcomm KINBBDCommFn

FKJTIMES FKINJtimes KINLsJacTimesVecFn

As with the rest of the fkinsol routines, the names of all user-supplied routines here are fixed, in
order to maximize portability for the resulting mixed-language program. Additionally, based on flags
discussed above in §5.3, the names of the user-supplied routines are mapped to actual values through
a series of definitions in the header file fkinbbd.h.

The following is a summary of the usage of this module. Steps that are unchanged from the main
program described in §5.4 are grayed-out.

1. Nonlinear system function specification

2. nvector module initialization

3. sunlinsol module initialization

Initialize one of the iterative sunlinsol modules, by calling one of FSUNPCGINIT, FSUNSPBCGSINIT,
FSUNSPFGMRINIT, FSUNSPGMRINIT or FSUNSPTFQMRINIT.

4. Problem specification

5. Set optional inputs

6. Solver Initialization

7. Linear solver interface specification

Initialize the kinls iterative linear solver interface by calling FKINLSINIT.

To initialize the kinbbdpre preconditioner, make the following call:

CALL FKINBBDINIT (NLOCAL, MUDQ, MLDQ, MU, ML, IER)

The arguments are as follows. NLOCAL is the local size of vectors for this process. MUDQ and MLDQ

are the upper and lower half-bandwidths to be used in the computation of the local Jacobian blocks
by difference quotients; these may be smaller than the true half-bandwidths of the Jacobian of
the local block of G, when smaller values may provide greater efficiency. MU and ML are the upper
and lower half-bandwidths of the band matrix that is retained as an approximation of the local
Jacobian block; these may be smaller than MUDQ and MLDQ. IER is a return completion flag. A
value of 0 indicates success, while a value of −1 indicates that a memory failure occurred or that
an input had an illegal value.

Optionally, to specify that the spgmr, spfgmr, spbcgs, or sptfqmr solver should use the
supplied FKJTIMES, make the call

74 FKINSOL, an Interface Module for FORTRAN Applications

CALL FKINLSSETJAC (FLAG, IER)

with FLAG 6= 0. (See step 8 in §5.4).

8. Problem solution

9. kinbbdpre Optional outputs

Optional outputs specific to the spgmr, spfgmr, spbcgs, or sptfqmr solver are listed in Table
5.2. To obtain the optional outputs associated with the kinbbdpre module, make the following
call:

CALL FKINBBDOPT (LENRBBD, LENIBBD, NGEBBD)

The arguments should be consistent with C type long int. Their returned values are as follows:
LENRBBD is the length of real preconditioner work space, in realtype words. LENIBBD is the length
of integer preconditioner work space, in integer words. These sizes are local to the current process.
NGEBBD is the cumulative number of G(u) evaluations (calls to FKLOCFN) so far.

10. Memory deallocation

(The memory allocated for the fkinbbd module is deallocated automatically by FKINFREE.)

11. User-supplied routines

The following two routines must be supplied for use with the kinbbdpre module:

SUBROUTINE FKLOCFN (NLOC, ULOC, GLOC, IER)

DIMENSION ULOC(*), GLOC(*)

This routine is to evaluate the function G(u) approximating F (possibly identical to F), in terms
of the array ULOC (of length NLOC), which is the sub-vector of u local to this processor. The
resulting (local) sub-vector is to be stored in the array GLOC. IER is an error return flag which
should be set to 0 if successful, a positive value if a recoverable error occurred (in which case
kinsol will attempt to correct), or a negative value if FKLOCFN failed unrecoverably (in which
case the solution process is halted).

SUBROUTINE FKCOMMFN (NLOC, ULOC, IER)

DIMENSION ULOC(*)

This routine is to perform the inter-processor communication necessary for the FKLOCFN routine.
Each call to FKCOMMFN is preceded by a call to the system function routine FKFUN with the same
argument ULOC. IER is an error return flag which should be set to 0 if successful, a positive value
if a recoverable error occurred (in which case kinsol will attempt to correct), or a negative value
if FKCOMMFN failed recoverably (in which case the solution process is halted).

The subroutine FKCOMMFN must be supplied even if it is not needed and must return IER = 0.!

Optionally, the user can supply a routine FKINJTIMES for the evaluation of Jacobian-vector prod-
ucts, as described above in step 8 in §5.4. Note that this routine is required if using Picard
iteration.

Chapter 6

Description of the NVECTOR
module

The sundials solvers are written in a data-independent manner. They all operate on generic vec-
tors (of type N Vector) through a set of operations defined by the particular nvector implemen-
tation. Users can provide their own specific implementation of the nvector module, or use one of
the implementations provided with sundials. The generic operations are described below and the
implementations provided with sundials are described in the following sections.

The generic N Vector type is a pointer to a structure that has an implementation-dependent
content field containing the description and actual data of the vector, and an ops field pointing to a
structure with generic vector operations. The type N Vector is defined as

typedef struct _generic_N_Vector *N_Vector;

struct _generic_N_Vector {

void *content;

struct _generic_N_Vector_Ops *ops;

};

The generic N Vector Ops structure is essentially a list of pointers to the various actual vector
operations, and is defined as

struct _generic_N_Vector_Ops {

N_Vector_ID (*nvgetvectorid)(N_Vector);

N_Vector (*nvclone)(N_Vector);

N_Vector (*nvcloneempty)(N_Vector);

void (*nvdestroy)(N_Vector);

void (*nvspace)(N_Vector, sunindextype *, sunindextype *);

realtype* (*nvgetarraypointer)(N_Vector);

void (*nvsetarraypointer)(realtype *, N_Vector);

void (*nvlinearsum)(realtype, N_Vector, realtype, N_Vector, N_Vector);

void (*nvconst)(realtype, N_Vector);

void (*nvprod)(N_Vector, N_Vector, N_Vector);

void (*nvdiv)(N_Vector, N_Vector, N_Vector);

void (*nvscale)(realtype, N_Vector, N_Vector);

void (*nvabs)(N_Vector, N_Vector);

void (*nvinv)(N_Vector, N_Vector);

void (*nvaddconst)(N_Vector, realtype, N_Vector);

realtype (*nvdotprod)(N_Vector, N_Vector);

realtype (*nvmaxnorm)(N_Vector);

realtype (*nvwrmsnorm)(N_Vector, N_Vector);

76 Description of the NVECTOR module

realtype (*nvwrmsnormmask)(N_Vector, N_Vector, N_Vector);

realtype (*nvmin)(N_Vector);

realtype (*nvwl2norm)(N_Vector, N_Vector);

realtype (*nvl1norm)(N_Vector);

void (*nvcompare)(realtype, N_Vector, N_Vector);

booleantype (*nvinvtest)(N_Vector, N_Vector);

booleantype (*nvconstrmask)(N_Vector, N_Vector, N_Vector);

realtype (*nvminquotient)(N_Vector, N_Vector);

int (*nvlinearcombination)(int, realtype*, N_Vector*, N_Vector);

int (*nvscaleaddmulti)(int, realtype*, N_Vector, N_Vector*, N_Vector*);

int (*nvdotprodmulti)(int, N_Vector, N_Vector*, realtype*);

int (*nvlinearsumvectorarray)(int, realtype, N_Vector*, realtype,

N_Vector*, N_Vector*);

int (*nvscalevectorarray)(int, realtype*, N_Vector*, N_Vector*);

int (*nvconstvectorarray)(int, realtype, N_Vector*);

int (*nvwrmsnomrvectorarray)(int, N_Vector*, N_Vector*, realtype*);

int (*nvwrmsnomrmaskvectorarray)(int, N_Vector*, N_Vector*, N_Vector,

realtype*);

int (*nvscaleaddmultivectorarray)(int, int, realtype*, N_Vector*,

N_Vector**, N_Vector**);

int (*nvlinearcombinationvectorarray)(int, int, realtype*, N_Vector**,

N_Vector*);

};

The generic nvector module defines and implements the vector operations acting on an N Vector.
These routines are nothing but wrappers for the vector operations defined by a particular nvector
implementation, which are accessed through the ops field of the N Vector structure. To illustrate
this point we show below the implementation of a typical vector operation from the generic nvector
module, namely N VScale, which performs the scaling of a vector x by a scalar c:

void N_VScale(realtype c, N_Vector x, N_Vector z)

{

z->ops->nvscale(c, x, z);

}

Table 6.2 contains a complete list of all standard vector operations defined by the generic nvector
module. Tables 6.3 and 6.4 list optional fused and vector array operations respectively.

Fused and vector array operations are intended to increase data reuse, reduce parallel commu-
nication on distributed memory systems, and lower the number of kernel launches on systems with
accelerators. If a particular nvector implementation defines a fused or vector array operation as
NULL, the generic nvector module will automatically call standard vector operations as necessary
to complete the desired operation. Currently, all fused and vector array operations are disabled by
default however, sundials provided nvector implementations define additional user-callable func-
tions to enable/disable any or all of the fused and vector array operations. See the following sections
for the implementation specific functions to enable/disable operations.

Finally, note that the generic nvector module defines the functions N VCloneVectorArray and
N VCloneVectorArrayEmpty. Both functions create (by cloning) an array of count variables of type
N Vector, each of the same type as an existing N Vector. Their prototypes are

N_Vector *N_VCloneVectorArray(int count, N_Vector w);

N_Vector *N_VCloneVectorArrayEmpty(int count, N_Vector w);

and their definitions are based on the implementation-specific N VClone and N VCloneEmpty opera-
tions, respectively.

An array of variables of type N Vector can be destroyed by calling N VDestroyVectorArray, whose
prototype is

77

Table 6.1: Vector Identifications associated with vector kernels supplied with sundials.

Vector ID Vector type ID Value
SUNDIALS NVEC SERIAL Serial 0
SUNDIALS NVEC PARALLEL Distributed memory parallel (MPI) 1
SUNDIALS NVEC OPENMP OpenMP shared memory parallel 2
SUNDIALS NVEC PTHREADS PThreads shared memory parallel 3
SUNDIALS NVEC PARHYP hypre ParHyp parallel vector 4
SUNDIALS NVEC PETSC petsc parallel vector 5
SUNDIALS NVEC OPENMPDEV OpenMP shared memory parallel with device offloading 6
SUNDIALS NVEC TRILINOS Trilinos Tpetra vector 7
SUNDIALS NVEC CUSTOM User-provided custom vector 8

void N_VDestroyVectorArray(N_Vector *vs, int count);

and whose definition is based on the implementation-specific N VDestroy operation.
A particular implementation of the nvector module must:

• Specify the content field of N Vector.

• Define and implement the vector operations. Note that the names of these routines should be
unique to that implementation in order to permit using more than one nvector module (each
with different N Vector internal data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free an
N Vector with the new content field and with ops pointing to the new vector operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined
N Vector (e.g., a routine to print the content for debugging purposes).

• Optionally, provide accessor macros as needed for that particular implementation to be used to
access different parts in the content field of the newly defined N Vector.

Each nvector implementation included in sundials has a unique identifier specified in enumer-
ation and shown in Table 6.1. It is recommended that a user-supplied nvector implementation use
the SUNDIALS NVEC CUSTOM identifier.

78 Description of the NVECTOR module

Table 6.2: Description of the NVECTOR operations

Name Usage and Description

N VGetVectorID id = N VGetVectorID(w);

Returns the vector type identifier for the vector w. It is used to determine
the vector implementation type (e.g. serial, parallel,. . .) from the abstract
N Vector interface. Returned values are given in Table 6.1.

N VClone v = N VClone(w);

Creates a new N Vector of the same type as an existing vector w and sets
the ops field. It does not copy the vector, but rather allocates storage for
the new vector.

N VCloneEmpty v = N VCloneEmpty(w);

Creates a new N Vector of the same type as an existing vector w and sets
the ops field. It does not allocate storage for data.

N VDestroy N VDestroy(v);

Destroys the N Vector v and frees memory allocated for its internal data.

N VSpace N VSpace(nvSpec, &lrw, &liw);

Returns storage requirements for one N Vector. lrw contains the number
of realtype words and liw contains the number of integer words. This
function is advisory only, for use in determining a user’s total space re-
quirements; it could be a dummy function in a user-supplied nvector
module if that information is not of interest.

N VGetArrayPointer vdata = N VGetArrayPointer(v);

Returns a pointer to a realtype array from the N Vector v. Note that
this assumes that the internal data in N Vector is a contiguous array of
realtype. This routine is only used in the solver-specific interfaces to the
dense and banded (serial) linear solvers, the sparse linear solvers (serial
and threaded), and in the interfaces to the banded (serial) and band-block-
diagonal (parallel) preconditioner modules provided with sundials.

N VSetArrayPointer N VSetArrayPointer(vdata, v);

Overwrites the data in an N Vector with a given array of realtype. Note
that this assumes that the internal data in N Vector is a contiguous array
of realtype. This routine is only used in the interfaces to the dense
(serial) linear solver, hence need not exist in a user-supplied nvector
module for a parallel environment.

continued on next page

79

continued from last page

Name Usage and Description

N VLinearSum N VLinearSum(a, x, b, y, z);

Performs the operation z = ax+ by, where a and b are realtype scalars
and x and y are of type N Vector: zi = axi + byi, i = 0, . . . , n− 1.

N VConst N VConst(c, z);

Sets all components of the N Vector z to realtype c: zi = c, i = 0, . . . , n−
1.

N VProd N VProd(x, y, z);

Sets the N Vector z to be the component-wise product of the N Vector

inputs x and y: zi = xiyi, i = 0, . . . , n− 1.

N VDiv N VDiv(x, y, z);

Sets the N Vector z to be the component-wise ratio of the N Vector inputs
x and y: zi = xi/yi, i = 0, . . . , n − 1. The yi may not be tested for 0
values. It should only be called with a y that is guaranteed to have all
nonzero components.

N VScale N VScale(c, x, z);

Scales the N Vector x by the realtype scalar c and returns the result in
z: zi = cxi, i = 0, . . . , n− 1.

N VAbs N VAbs(x, z);

Sets the components of the N Vector z to be the absolute values of the
components of the N Vector x: yi = |xi|, i = 0, . . . , n− 1.

N VInv N VInv(x, z);

Sets the components of the N Vector z to be the inverses of the compo-
nents of the N Vector x: zi = 1.0/xi, i = 0, . . . , n− 1. This routine may
not check for division by 0. It should be called only with an x which is
guaranteed to have all nonzero components.

N VAddConst N VAddConst(x, b, z);

Adds the realtype scalar b to all components of x and returns the result
in the N Vector z: zi = xi + b, i = 0, . . . , n− 1.

N VDotProd d = N VDotProd(x, y);

Returns the value of the ordinary dot product of x and y: d =
∑n−1
i=0 xiyi.

N VMaxNorm m = N VMaxNorm(x);

Returns the maximum norm of the N Vector x: m = maxi |xi|.

continued on next page

80 Description of the NVECTOR module

continued from last page

Name Usage and Description

N VWrmsNorm m = N VWrmsNorm(x, w)

Returns the weighted root-mean-square norm of the N Vector x with

realtype weight vector w: m =

√(∑n−1
i=0 (xiwi)2

)
/n.

N VWrmsNormMask m = N VWrmsNormMask(x, w, id);

Returns the weighted root mean square norm of the N Vector x with
realtype weight vector w built using only the elements of x corresponding
to positive elements of the N Vector id:

m =

√(∑n−1
i=0 (xiwiH(idi))2

)
/n, where H(α) =

{
1 α > 0

0 α ≤ 0

N VMin m = N VMin(x);

Returns the smallest element of the N Vector x: m = mini xi.

N VWL2Norm m = N VWL2Norm(x, w);

Returns the weighted Euclidean `2 norm of the N Vector x with realtype

weight vector w: m =
√∑n−1

i=0 (xiwi)2.

N VL1Norm m = N VL1Norm(x);

Returns the `1 norm of the N Vector x: m =
∑n−1
i=0 |xi|.

N VCompare N VCompare(c, x, z);

Compares the components of the N Vector x to the realtype scalar c

and returns an N Vector z such that: zi = 1.0 if |xi| ≥ c and zi = 0.0
otherwise.

N VInvTest t = N VInvTest(x, z);

Sets the components of the N Vector z to be the inverses of the compo-
nents of the N Vector x, with prior testing for zero values: zi = 1.0/xi, i =
0, . . . , n − 1. This routine returns a boolean assigned to SUNTRUE if all
components of x are nonzero (successful inversion) and returns SUNFALSE
otherwise.

N VConstrMask t = N VConstrMask(c, x, m);

Performs the following constraint tests: xi > 0 if ci = 2, xi ≥ 0 if ci = 1,
xi ≤ 0 if ci = −1, xi < 0 if ci = −2. There is no constraint on xi if ci = 0.
This routine returns a boolean assigned to SUNFALSE if any element failed
the constraint test and assigned to SUNTRUE if all passed. It also sets a
mask vector m, with elements equal to 1.0 where the constraint test failed,
and 0.0 where the test passed. This routine is used only for constraint
checking.

continued on next page

81

continued from last page

Name Usage and Description

N VMinQuotient minq = N VMinQuotient(num, denom);

This routine returns the minimum of the quotients obtained by term-wise
dividing numi by denomi. A zero element in denom will be skipped. If no
such quotients are found, then the large value BIG REAL (defined in the
header file sundials types.h) is returned.

Table 6.3: Description of the NVECTOR fused operations

Name Usage and Description

N VLinearCombination ier = N VLinearCombination(nv, c, X, z);

This routine computes the linear combination of nv vectors with n
elements:

zi =

nv−1∑
j=0

cjxj,i, i = 0, . . . , n− 1,

where c is an array of nv scalars (type realtype*), X is an array of nv
vectors (type N Vector*), and z is the output vector (type N Vector).
If the output vector z is one of the vectors in X, then it must be the
first vector in the vector array. The operation returns 0 for success and
a non-zero value otherwise.

N VScaleAddMulti ier = N VScaleAddMulti(nv, c, x, Y, Z);

This routine scales and adds one vector to nv vectors with n elements:

zj,i = cjxi + yj,i, j = 0, . . . , nv − 1 i = 0, . . . , n− 1,

where c is an array of nv scalars (type realtype*), x is the vector (type
N Vector) to be scaled and added to each vector in the vector array
of nv vectors Y (type N Vector*), and Z (type N Vector*) is a vector
array of nv output vectors. The operation returns 0 for success and a
non-zero value otherwise.

continued on next page

82 Description of the NVECTOR module

continued from last page

Name Usage and Description

N VDotProdMulti ier = N VDotProdMulti(nv, x, Y, d);

This routine computes the dot product of a vector with nv other vectors:

dj =

n−1∑
i=0

xiyj,i, j = 0, . . . , nv − 1,

where d (type realtype*) is an array of nv scalars containing the dot
products of the vector x (type N Vector) with each of the nv vectors
in the vector array Y (type N Vector*). The operation returns 0 for
success and a non-zero value otherwise.

Table 6.4: Description of the NVECTOR vector array operations

Name Usage and Description

N VLinearSumVectorArray ier = N VLinearSumVectorArray(nv, a, X, b, Y,

Z);

This routine comuptes the linear sum of two vector arrays
containing nv vectors of n elements:

zj,i = axj,i + byj,i, i = 0, . . . , n− 1 j = 0, . . . , nv − 1,

where a and b are realtype scalars and X, Y , and Z
are arrays of nv vectors (type N Vector*). The operation
returns 0 for success and a non-zero value otherwise.

N VScaleVectorArray ier = N VScaleVectorArray(nv, c, X, Z);

This routine scales each vector of n elements in a vector
array of nv vectors by a potentially different constant:

zj,i = cjxj,i, i = 0, . . . , n− 1 j = 0, . . . , nv − 1,

where c is an array of nv scalars (type realtype*) and
X and Z are arrays of nv vectors (type N Vector*).
The operation returns 0 for success and a non-zero value
otherwise.

continued on next page

83

continued from last page

Name Usage and Description

N VConstVectorArray ier = N VConstVectorArray(nv, c, X);

This routine sets each element in a vector of n elements
in a vector array of nv vectors to the same value:

zj,i = c, i = 0, . . . , n− 1 j = 0, . . . , nv − 1,

where c is a realtype scalar and X is an array of nv
vectors (type N Vector*). The operation returns 0 for
success and a non-zero value otherwise.

N VWrmsNormVectorArray ier = N VWrmsNormVectorArray(nv, X, W, m);

This routine computes the weighted root mean square
norm of nv vectors with n elements:

mj =

(
1

n

n−1∑
i=0

(xj,iwj,i)
2

)1/2

, j = 0, . . . , nv − 1,

where m (type realtype*) contains the nv norms of the
vectors in the vector array X (type N Vector*) with corre-
sponding weight vectors W (type N Vector*). The opera-
tion returns 0 for success and a non-zero value otherwise.

N VWrmsNormMaskVectorArray ier = N VWrmsNormMaskVectorArray(nv, X, W, id,

m);

This routine computes the masked weighted root mean
square norm of nv vectors with n elements:

mj =

(
1

n

n−1∑
i=0

(xj,iwj,iH(idi))
2

)1/2

, j = 0, . . . , nv − 1,

H(idi) = 1 for idi > 0 and is zero otherwise, m (type
realtype*) contains the nv norms of the vectors in
the vector array X (type N Vector*) with corresponding
weight vectors W (type N Vector*) and mask vector id
(type N Vector). The operation returns 0 for success and
a non-zero value otherwise.

continued on next page

84 Description of the NVECTOR module

continued from last page

Name Usage and Description

N VScaleAddMultiVectorArray ier = N VScaleAddMultiVectorArray(nv, ns, c, X,

YY, ZZ);

This routine scales and adds a vector in a vector array of
nv vectors to the corresponding vector in ns vector arrays:

zj,i =

ns−1∑
k=0

ckxk,j,i, i = 0, . . . , n− 1 j = 0, . . . , nv − 1,

where c is an array of ns scalars (type realtype*), X
is a vector array of nv vectors (type idN Vector*) to be
scaled and added to the corresponding vector in each of
the ns vector arrays in the array of vector arrays Y Y (type
N Vector**) and stored in the output array of vector ar-
rays ZZ (type N Vector**). The operation returns 0 for
success and a non-zero value otherwise.

N VLinearCombinationVectorArray ier = N VLinearCombinationVectorArray(nv, ns, c,

XX, Z);

This routine computes the linear combination of ns vector
arrays containing nv vectors with n elements:

zj,i =

ns−1∑
k=0

ckxk,j,i, i = 0, . . . , n− 1 j = 0, . . . , nv − 1,

where c is an array of ns scalars (type realtype*), XX
(type N Vector**) is an array of ns vector arrays each
containing nv vectors to be summed into the output vector
array of nv vectors Z (type N Vector*). If the output
vector array Z is one of the vector arrays in XX, then
it must be the first vector array in XX. The operation
returns 0 for success and a non-zero value otherwise.

6.1 NVECTOR functions used by KINSOL

In Table 6.5 below, we list the vector functions in the nvector module used within the kinsol
package. The table also shows, for each function, which of the code modules uses the function. The
kinsol column shows function usage within the main solver module, while the remaining five columns
show function usage within each of the kinsol linear solver interfaces, the kinbbdpre preconditioner
module, and the fkinsol module. Here kinls stands for the generic linear solver interface in kinsol.

At this point, we should emphasize that the kinsol user does not need to know anything about
the usage of vector functions by the kinsol code modules in order to use kinsol. The information is
presented as an implementation detail for the interested reader.

Special cases (numbers match markings in table):

1. These routines are only required if an internal difference-quotient routine for constructing dense
or band Jacobian matrices is used.

2. This routine is optional, and is only used in estimating space requirements for ida modules for
user feedback.

3. These routines are only required if the internal difference-quotient routine for approximating the
Jacobian-vector product is used.

6.2 The NVECTOR SERIAL implementation 85

Table 6.5: List of vector functions usage by kinsol code modules

k
in
so

l

k
in
l
s

k
in
b
b
d
p
r
e

f
k
in
so

l

N VGetVectorID

N VClone X X
N VCloneEmpty X

N VDestroy X X X
N VSpace X 2

N VGetArrayPointer 1 X X
N VSetArrayPointer 1 X

N VLinearSum X X
N VConst X
N VProd X X
N VDiv X

N VScale X X X
N VAbs X
N VInv X

N VDotProd X X
N VMaxNorm X

N VMin X
N VWL2Norm X X
N VL1Norm 3

N VConstrMask X
N VMinQuotient X

N VLinearCombination X X
N VDotProdMulti X

Each sunlinsol object may require additional nvector routines not listed in the table above.
Please see the the relevant descriptions of these modules in Sections 8.5-8.15 for additional detail on
their nvector requirements.

The vector functions listed in Table 6.2 that are not used by kinsol are N VAddConst, N VWrmsNorm,
N VWrmsNormMask, N VCompare, and N VInvTest. Therefore a user-supplied nvector module for
kinsol could omit these functions.

The optional function N VLinearCombination is only used when Anderson acceleration is enabled
or the spbcgs, sptfqmr, spgmr, or spfgmr linear solvers are used. N VDotProd is only used when
Anderson acceleration is enabled or Classical Gram-Schmidt is used with spgmr or spfgmr. The
remaining operations from Tables 6.3 and 6.4 are unused and a user-supplied nvector module for
kinsol could omit these operations.

6.2 The NVECTOR SERIAL implementation

The serial implementation of the nvector module provided with sundials, nvector serial, defines
the content field of N Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, and a boolean flag own data which specifies the ownership of
data.

struct _N_VectorContent_Serial {

sunindextype length;

86 Description of the NVECTOR module

booleantype own_data;

realtype *data;

};

The header file to include when using this module is nvector serial.h. The installed module
library to link to is libsundials nvecserial.lib where .lib is typically .so for shared libraries
and .a for static libraries.

6.2.1 NVECTOR SERIAL accessor macros

The following macros are provided to access the content of an nvector serial vector. The suffix S

in the names denotes the serial version.

• NV CONTENT S

This routine gives access to the contents of the serial vector N Vector.

The assignment v cont = NV CONTENT S(v) sets v cont to be a pointer to the serial N Vector

content structure.

Implementation:

#define NV_CONTENT_S(v) ((N_VectorContent_Serial)(v->content))

• NV OWN DATA S, NV DATA S, NV LENGTH S

These macros give individual access to the parts of the content of a serial N Vector.

The assignment v data = NV DATA S(v) sets v data to be a pointer to the first component of
the data for the N Vector v. The assignment NV DATA S(v) = v data sets the component array
of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH S(v) sets v len to be the length of v. On the other hand,
the call NV LENGTH S(v) = len v sets the length of v to be len v.

Implementation:

#define NV_OWN_DATA_S(v) (NV_CONTENT_S(v)->own_data)

#define NV_DATA_S(v) (NV_CONTENT_S(v)->data)

#define NV_LENGTH_S(v) (NV_CONTENT_S(v)->length)

• NV Ith S

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith S(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith S(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_S(v,i) (NV_DATA_S(v)[i])

6.2.2 NVECTOR SERIAL functions

The nvector serial module defines serial implementations of all vector operations listed in Tables
6.2, 6.3, and 6.4. Their names are obtained from those in Tables 6.2, 6.3, and 6.4 by appending
the suffix Serial (e.g. N VDestroy Serial). All the standard vector operations listed in 6.2 with
the suffix Serial appended are callable via the Fortran 2003 interface by prepending an ‘F’ (e.g.
FN VDestroy Serial).

The module nvector serial provides the following additional user-callable routines:

6.2 The NVECTOR SERIAL implementation 87

N VNew Serial

Prototype N Vector N VNew Serial(sunindextype vec length);

Description This function creates and allocates memory for a serial N Vector. Its only argument is
the vector length.

F2003 Name This function is callable as FN VNew Serial when using the Fortran 2003 interface mod-
ule.

N VNewEmpty Serial

Prototype N Vector N VNewEmpty Serial(sunindextype vec length);

Description This function creates a new serial N Vector with an empty (NULL) data array.

F2003 Name This function is callable as FN VNewEmpty Serial when using the Fortran 2003 interface
module.

N VMake Serial

Prototype N Vector N VMake Serial(sunindextype vec length, realtype *v data);

Description This function creates and allocates memory for a serial vector with user-provided data
array.

(This function does not allocate memory for v data itself.)

F2003 Name This function is callable as FN VMake Serial when using the Fortran 2003 interface
module.

N VCloneVectorArray Serial

Prototype N Vector *N VCloneVectorArray Serial(int count, N Vector w);

Description This function creates (by cloning) an array of count serial vectors.

N VCloneVectorArrayEmpty Serial

Prototype N Vector *N VCloneVectorArrayEmpty Serial(int count, N Vector w);

Description This function creates (by cloning) an array of count serial vectors, each with an empty
(NULL) data array.

N VDestroyVectorArray Serial

Prototype void N VDestroyVectorArray Serial(N Vector *vs, int count);

Description This function frees memory allocated for the array of count variables of type N Vector

created with N VCloneVectorArray Serial or with
N VCloneVectorArrayEmpty Serial.

N VGetLength Serial

Prototype sunindextype N VGetLength Serial(N Vector v);

Description This function returns the number of vector elements.

F2003 Name This function is callable as FN VGetLength Serial when using the Fortran 2003 interface
module.

88 Description of the NVECTOR module

N VPrint Serial

Prototype void N VPrint Serial(N Vector v);

Description This function prints the content of a serial vector to stdout.

F2003 Name This function is callable as FN VPrint Serial when using the Fortran 2003 interface
module.

N VPrintFile Serial

Prototype void N VPrintFile Serial(N Vector v, FILE *outfile);

Description This function prints the content of a serial vector to outfile.

By default all fused and vector array operations are disabled in the nvector serial module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VNew Serial, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VNew Serial

will have the default settings for the nvector serial module.

N VEnableFusedOps Serial

Prototype int N VEnableFusedOps Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the serial vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableLinearCombination Serial

Prototype int N VEnableLinearCombination Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the serial vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleAddMulti Serial

Prototype int N VEnableScaleAddMulti Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the serial vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableDotProdMulti Serial

Prototype int N VEnableDotProdMulti Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the serial vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableLinearSumVectorArray Serial

Prototype int N VEnableLinearSumVectorArray Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the serial vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

6.2 The NVECTOR SERIAL implementation 89

N VEnableScaleVectorArray Serial

Prototype int N VEnableScaleVectorArray Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the serial vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableConstVectorArray Serial

Prototype int N VEnableConstVectorArray Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the serial vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableWrmsNormVectorArray Serial

Prototype int N VEnableWrmsNormVectorArray Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the serial vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableWrmsNormMaskVectorArray Serial

Prototype int N VEnableWrmsNormMaskVectorArray Serial(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the serial vector. The return value is 0 for success and -1 if
the input vector or its ops structure are NULL.

N VEnableScaleAddMultiVectorArray Serial

Prototype int N VEnableScaleAddMultiVectorArray Serial(N Vector v,

booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the serial vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray Serial

Prototype int N VEnableLinearCombinationVectorArray Serial(N Vector v,

booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the serial vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA S(v) and then access v data[i] within the loop than
it is to use NV Ith S(v,i) within the loop.

• N VNewEmpty Serial, N VMake Serial, and N VCloneVectorArrayEmpty Serial set the field !

own data = SUNFALSE. N VDestroy Serial and N VDestroyVectorArray Serial will not at-
tempt to free the pointer data for any N Vector with own data set to SUNFALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

90 Description of the NVECTOR module

• To maximize efficiency, vector operations in the nvector serial implementation that have
! more than one N Vector argument do not check for consistent internal representation of these

vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

6.2.3 NVECTOR SERIAL Fortran interfaces

The nvector serial module provides a Fortran 2003 module as well as Fortran 77 style interface
functions for use from Fortran applications.

FORTRAN 2003 interface module

The fnvector serial mod Fortran module defines interfaces to all nvector serial C functions
using the intrinsic iso c binding module which provides a standardized mechanism for interoperat-
ing with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function N VNew Serial is
interfaced as FN VNew Serial.

The Fortran 2003 nvector serial interface module can be accessed with the use statement,
i.e. use fnvector serial mod, and linking to the library libsundials fnvectorserial mod.lib in
addition to the C library. For details on where the library and module file fnvector serial mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fnvectorserial mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the nvector serial module also includes a
Fortran-callable function FNVINITS(code, NEQ, IER), to initialize this nvector serial module.
Here code is an input solver id (1 for cvode, 2 for ida, 3 for kinsol, 4 for arkode); NEQ is the
problem size (declared so as to match C type long int); and IER is an error return flag equal 0 for
success and -1 for failure.

6.3 The NVECTOR PARALLEL implementation

The nvector parallel implementation of the nvector module provided with sundials is based on
MPI. It defines the content field of N Vector to be a structure containing the global and local lengths
of the vector, a pointer to the beginning of a contiguous local data array, an MPI communicator, and
a boolean flag own data indicating ownership of the data array data.

struct _N_VectorContent_Parallel {

sunindextype local_length;

sunindextype global_length;

booleantype own_data;

realtype *data;

MPI_Comm comm;

};

The header file to include when using this module is nvector parallel.h. The installed module
library to link to is libsundials nvecparallel.lib where .lib is typically .so for shared libraries
and .a for static libraries.

6.3.1 NVECTOR PARALLEL accessor macros

The following macros are provided to access the content of a nvector parallel vector. The suffix
P in the names denotes the distributed memory parallel version.

6.3 The NVECTOR PARALLEL implementation 91

• NV CONTENT P

This macro gives access to the contents of the parallel vector N Vector.

The assignment v cont = NV CONTENT P(v) sets v cont to be a pointer to the N Vector content
structure of type struct N VectorContent Parallel.

Implementation:

#define NV_CONTENT_P(v) ((N_VectorContent_Parallel)(v->content))

• NV OWN DATA P, NV DATA P, NV LOCLENGTH P, NV GLOBLENGTH P

These macros give individual access to the parts of the content of a parallel N Vector.

The assignment v data = NV DATA P(v) sets v data to be a pointer to the first component of
the local data for the N Vector v. The assignment NV DATA P(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v llen = NV LOCLENGTH P(v) sets v llen to be the length of the local part of
v. The call NV LENGTH P(v) = llen v sets the local length of v to be llen v.

The assignment v glen = NV GLOBLENGTH P(v) sets v glen to be the global length of the vector
v. The call NV GLOBLENGTH P(v) = glen v sets the global length of v to be glen v.

Implementation:

#define NV_OWN_DATA_P(v) (NV_CONTENT_P(v)->own_data)

#define NV_DATA_P(v) (NV_CONTENT_P(v)->data)

#define NV_LOCLENGTH_P(v) (NV_CONTENT_P(v)->local_length)

#define NV_GLOBLENGTH_P(v) (NV_CONTENT_P(v)->global_length)

• NV COMM P

This macro provides access to the MPI communicator used by the nvector parallel vectors.

Implementation:

#define NV_COMM_P(v) (NV_CONTENT_P(v)->comm)

• NV Ith P

This macro gives access to the individual components of the local data array of an N Vector.

The assignment r = NV Ith P(v,i) sets r to be the value of the i-th component of the local
part of v. The assignment NV Ith P(v,i) = r sets the value of the i-th component of the local
part of v to be r.

Here i ranges from 0 to n− 1, where n is the local length.

Implementation:

#define NV_Ith_P(v,i) (NV_DATA_P(v)[i])

6.3.2 NVECTOR PARALLEL functions

The nvector parallel module defines parallel implementations of all vector operations listed in
Tables 6.2, 6.3, and 6.4. Their names are obtained from those in Tables 6.2, 6.3, and 6.4 by appending
the suffix Parallel (e.g. N VDestroy Parallel). The module nvector parallel provides the
following additional user-callable routines:

N VNew Parallel

Prototype N Vector N VNew Parallel(MPI Comm comm, sunindextype local length,

sunindextype global length);

Description This function creates and allocates memory for a parallel vector.

92 Description of the NVECTOR module

N VNewEmpty Parallel

Prototype N Vector N VNewEmpty Parallel(MPI Comm comm, sunindextype local length,

sunindextype global length);

Description This function creates a new parallel N Vector with an empty (NULL) data array.

N VMake Parallel

Prototype N Vector N VMake Parallel(MPI Comm comm, sunindextype local length,

sunindextype global length, realtype *v data);

Description This function creates and allocates memory for a parallel vector with user-provided data
array. This function does not allocate memory for v data itself.

N VCloneVectorArray Parallel

Prototype N Vector *N VCloneVectorArray Parallel(int count, N Vector w);

Description This function creates (by cloning) an array of count parallel vectors.

N VCloneVectorArrayEmpty Parallel

Prototype N Vector *N VCloneVectorArrayEmpty Parallel(int count, N Vector w);

Description This function creates (by cloning) an array of count parallel vectors, each with an empty
(NULL) data array.

N VDestroyVectorArray Parallel

Prototype void N VDestroyVectorArray Parallel(N Vector *vs, int count);

Description This function frees memory allocated for the array of count variables of type N Vector

created with N VCloneVectorArray Parallel or with
N VCloneVectorArrayEmpty Parallel.

N VGetLength Parallel

Prototype sunindextype N VGetLength Parallel(N Vector v);

Description This function returns the number of vector elements (global vector length).

N VGetLocalLength Parallel

Prototype sunindextype N VGetLocalLength Parallel(N Vector v);

Description This function returns the local vector length.

N VPrint Parallel

Prototype void N VPrint Parallel(N Vector v);

Description This function prints the local content of a parallel vector to stdout.

6.3 The NVECTOR PARALLEL implementation 93

N VPrintFile Parallel

Prototype void N VPrintFile Parallel(N Vector v, FILE *outfile);

Description This function prints the local content of a parallel vector to outfile.

By default all fused and vector array operations are disabled in the nvector parallel module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VNew Parallel, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone with that vector.
This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors
inherit the same enable/disable options as the vector they are cloned from while vectors created with
N VNew Parallel will have the default settings for the nvector parallel module.

N VEnableFusedOps Parallel

Prototype int N VEnableFusedOps Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array oper-
ations in the parallel vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableLinearCombination Parallel

Prototype int N VEnableLinearCombination Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the parallel vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleAddMulti Parallel

Prototype int N VEnableScaleAddMulti Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the parallel vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableDotProdMulti Parallel

Prototype int N VEnableDotProdMulti Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the parallel vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableLinearSumVectorArray Parallel

Prototype int N VEnableLinearSumVectorArray Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the parallel vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleVectorArray Parallel

Prototype int N VEnableScaleVectorArray Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the parallel vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

94 Description of the NVECTOR module

N VEnableConstVectorArray Parallel

Prototype int N VEnableConstVectorArray Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the parallel vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableWrmsNormVectorArray Parallel

Prototype int N VEnableWrmsNormVectorArray Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the parallel vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableWrmsNormMaskVectorArray Parallel

Prototype int N VEnableWrmsNormMaskVectorArray Parallel(N Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the parallel vector. The return value is 0 for success and -1

if the input vector or its ops structure are NULL.

N VEnableScaleAddMultiVectorArray Parallel

Prototype int N VEnableScaleAddMultiVectorArray Parallel(N Vector v,

booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector
array to multiple vector arrays operation in the parallel vector. The return value is 0

for success and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray Parallel

Prototype int N VEnableLinearCombinationVectorArray Parallel(N Vector v,

booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the parallel vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the local
component array via v data = NV DATA P(v) and then access v data[i] within the loop than
it is to use NV Ith P(v,i) within the loop.

• N VNewEmpty Parallel, N VMake Parallel, and N VCloneVectorArrayEmpty Parallel set the!

field own data = SUNFALSE. N VDestroy Parallel and N VDestroyVectorArray Parallel will
not attempt to free the pointer data for any N Vector with own data set to SUNFALSE. In such
a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector parallel implementation that have!

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

6.4 The NVECTOR OPENMP implementation 95

6.3.3 NVECTOR PARALLEL Fortran interfaces

For solvers that include a Fortran 77 interface module, the nvector parallel module also in-
cludes a Fortran-callable function FNVINITP(COMM, code, NLOCAL, NGLOBAL, IER), to initialize
this nvector parallel module. Here COMM is the MPI communicator, code is an input solver
id (1 for cvode, 2 for ida, 3 for kinsol, 4 for arkode); NLOCAL and NGLOBAL are the local and
global vector sizes, respectively (declared so as to match C type long int); and IER is an error
return flag equal 0 for success and -1 for failure. NOTE: If the header file sundials config.h de- !

fines SUNDIALS MPI COMM F2C to be 1 (meaning the MPI implementation used to build sundials
includes the MPI Comm f2c function), then COMM can be any valid MPI communicator. Otherwise,
MPI COMM WORLD will be used, so just pass an integer value as a placeholder.

6.4 The NVECTOR OPENMP implementation

In situations where a user has a multi-core processing unit capable of running multiple parallel threads
with shared memory, sundials provides an implementation of nvector using OpenMP, called nvec-
tor openmp, and an implementation using Pthreads, called nvector pthreads. Testing has shown
that vectors should be of length at least 100, 000 before the overhead associated with creating and
using the threads is made up by the parallelism in the vector calculations.

The OpenMP nvector implementation provided with sundials, nvector openmp, defines the
content field of N Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, a boolean flag own data which specifies the ownership of data,
and the number of threads. Operations on the vector are threaded using OpenMP.

struct _N_VectorContent_OpenMP {

sunindextype length;

booleantype own_data;

realtype *data;

int num_threads;

};

The header file to include when using this module is nvector openmp.h. The installed module
library to link to is libsundials nvecopenmp.lib where .lib is typically .so for shared libraries
and .a for static libraries. The Fortran module file to use when using the Fortran 2003 interface
to this module is fnvector openmp mod.mod.

6.4.1 NVECTOR OPENMP accessor macros

The following macros are provided to access the content of an nvector openmp vector. The suffix
OMP in the names denotes the OpenMP version.

• NV CONTENT OMP

This routine gives access to the contents of the OpenMP vector N Vector.

The assignment v cont = NV CONTENT OMP(v) sets v cont to be a pointer to the OpenMP
N Vector content structure.

Implementation:

#define NV_CONTENT_OMP(v) ((N_VectorContent_OpenMP)(v->content))

• NV OWN DATA OMP, NV DATA OMP, NV LENGTH OMP, NV NUM THREADS OMP

These macros give individual access to the parts of the content of a OpenMP N Vector.

The assignment v data = NV DATA OMP(v) sets v data to be a pointer to the first component
of the data for the N Vector v. The assignment NV DATA OMP(v) = v data sets the component
array of v to be v data by storing the pointer v data.

96 Description of the NVECTOR module

The assignment v len = NV LENGTH OMP(v) sets v len to be the length of v. On the other
hand, the call NV LENGTH OMP(v) = len v sets the length of v to be len v.

The assignment v num threads = NV NUM THREADS OMP(v) sets v num threads to be the num-
ber of threads from v. On the other hand, the call NV NUM THREADS OMP(v) = num threads v

sets the number of threads for v to be num threads v.

Implementation:

#define NV_OWN_DATA_OMP(v) (NV_CONTENT_OMP(v)->own_data)

#define NV_DATA_OMP(v) (NV_CONTENT_OMP(v)->data)

#define NV_LENGTH_OMP(v) (NV_CONTENT_OMP(v)->length)

#define NV_NUM_THREADS_OMP(v) (NV_CONTENT_OMP(v)->num_threads)

• NV Ith OMP

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith OMP(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith OMP(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_OMP(v,i) (NV_DATA_OMP(v)[i])

6.4.2 NVECTOR OPENMP functions

The nvector openmp module defines OpenMP implementations of all vector operations listed in
Tables 6.2, 6.3, and 6.4. Their names are obtained from those in Tables 6.2, 6.3, and 6.4 by appending
the suffix OpenMP (e.g. N VDestroy OpenMP). All the standard vector operations listed in 6.2 with
the suffix OpenMP appended are callable via the Fortran 2003 interface by prepending an ‘F’ (e.g.
FN VDestroy OpenMP).

The module nvector openmp provides the following additional user-callable routines:

N VNew OpenMP

Prototype N Vector N VNew OpenMP(sunindextype vec length, int num threads)

Description This function creates and allocates memory for a OpenMP N Vector. Arguments are
the vector length and number of threads.

F2003 Name This function is callable as FN VNew OpenMP when using the Fortran 2003 interface mod-
ule.

N VNewEmpty OpenMP

Prototype N Vector N VNewEmpty OpenMP(sunindextype vec length, int num threads)

Description This function creates a new OpenMP N Vector with an empty (NULL) data array.

F2003 Name This function is callable as FN VNewEmpty OpenMP when using the Fortran 2003 interface
module.

N VMake OpenMP

Prototype N Vector N VMake OpenMP(sunindextype vec length, realtype *v data,

int num threads);

Description This function creates and allocates memory for a OpenMP vector with user-provided
data array. This function does not allocate memory for v data itself.

F2003 Name This function is callable as FN VMake OpenMP when using the Fortran 2003 interface
module.

6.4 The NVECTOR OPENMP implementation 97

N VCloneVectorArray OpenMP

Prototype N Vector *N VCloneVectorArray OpenMP(int count, N Vector w)

Description This function creates (by cloning) an array of count OpenMP vectors.

N VCloneVectorArrayEmpty OpenMP

Prototype N Vector *N VCloneVectorArrayEmpty OpenMP(int count, N Vector w)

Description This function creates (by cloning) an array of count OpenMP vectors, each with an
empty (NULL) data array.

N VDestroyVectorArray OpenMP

Prototype void N VDestroyVectorArray OpenMP(N Vector *vs, int count)

Description This function frees memory allocated for the array of count variables of type N Vector

created with N VCloneVectorArray OpenMP or with N VCloneVectorArrayEmpty OpenMP.

N VGetLength OpenMP

Prototype sunindextype N VGetLength OpenMP(N Vector v)

Description This function returns number of vector elements.

F2003 Name This function is callable as FN VGetLength OpenMP when using the Fortran 2003 interface
module.

N VPrint OpenMP

Prototype void N VPrint OpenMP(N Vector v)

Description This function prints the content of an OpenMP vector to stdout.

F2003 Name This function is callable as FN VPrint OpenMP when using the Fortran 2003 interface
module.

N VPrintFile OpenMP

Prototype void N VPrintFile OpenMP(N Vector v, FILE *outfile)

Description This function prints the content of an OpenMP vector to outfile.

By default all fused and vector array operations are disabled in the nvector openmp module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VNew OpenMP, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VNew OpenMP

will have the default settings for the nvector openmp module.

N VEnableFusedOps OpenMP

Prototype int N VEnableFusedOps OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the OpenMP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

98 Description of the NVECTOR module

N VEnableLinearCombination OpenMP

Prototype int N VEnableLinearCombination OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the OpenMP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleAddMulti OpenMP

Prototype int N VEnableScaleAddMulti OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the OpenMP vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableDotProdMulti OpenMP

Prototype int N VEnableDotProdMulti OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the OpenMP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableLinearSumVectorArray OpenMP

Prototype int N VEnableLinearSumVectorArray OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the OpenMP vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

N VEnableScaleVectorArray OpenMP

Prototype int N VEnableScaleVectorArray OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the OpenMP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableConstVectorArray OpenMP

Prototype int N VEnableConstVectorArray OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the OpenMP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableWrmsNormVectorArray OpenMP

Prototype int N VEnableWrmsNormVectorArray OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the OpenMP vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

6.4 The NVECTOR OPENMP implementation 99

N VEnableWrmsNormMaskVectorArray OpenMP

Prototype int N VEnableWrmsNormMaskVectorArray OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the OpenMP vector. The return value is 0 for success and
-1 if the input vector or its ops structure are NULL.

N VEnableScaleAddMultiVectorArray OpenMP

Prototype int N VEnableScaleAddMultiVectorArray OpenMP(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the OpenMP vector. The return value is 0 for
success and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray OpenMP

Prototype int N VEnableLinearCombinationVectorArray OpenMP(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the OpenMP vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA OMP(v) and then access v data[i] within the loop
than it is to use NV Ith OMP(v,i) within the loop.

• N VNewEmpty OpenMP, N VMake OpenMP, and N VCloneVectorArrayEmpty OpenMP set the field !

own data = SUNFALSE. N VDestroy OpenMP and N VDestroyVectorArray OpenMP will not at-
tempt to free the pointer data for any N Vector with own data set to SUNFALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector openmp implementation that have !

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

6.4.3 NVECTOR OPENMP Fortran interfaces

The nvector openmp module provides a Fortran 2003 module as well as Fortran 77 style inter-
face functions for use from Fortran applications.

FORTRAN 2003 interface module

The nvector openmp mod Fortran module defines interfaces to most nvector openmp C functions
using the intrinsic iso c binding module which provides a standardized mechanism for interoperat-
ing with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function N VNew OpenMP is
interfaced as FN VNew OpenMP.

The Fortran 2003 nvector openmp interface module can be accessed with the use statement,
i.e. use fnvector openmp mod, and linking to the library libsundials fnvectoropenmp mod.lib in
addition to the C library. For details on where the library and module file fnvector openmp mod.mod

are installed see Appendix A.

100 Description of the NVECTOR module

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the nvector openmp module also includes
a Fortran-callable function FNVINITOMP(code, NEQ, NUMTHREADS, IER), to initialize this module.
Here code is an input solver id (1 for cvode, 2 for ida, 3 for kinsol, 4 for arkode); NEQ is the
problem size (declared so as to match C type long int); NUMTHREADS is the number of threads;
and IER is an error return flag equal 0 for success and -1 for failure.

6.5 The NVECTOR PTHREADS implementation

In situations where a user has a multi-core processing unit capable of running multiple parallel threads
with shared memory, sundials provides an implementation of nvector using OpenMP, called nvec-
tor openmp, and an implementation using Pthreads, called nvector pthreads. Testing has shown
that vectors should be of length at least 100, 000 before the overhead associated with creating and
using the threads is made up by the parallelism in the vector calculations.

The Pthreads nvector implementation provided with sundials, denoted nvector pthreads,
defines the content field of N Vector to be a structure containing the length of the vector, a pointer
to the beginning of a contiguous data array, a boolean flag own data which specifies the ownership
of data, and the number of threads. Operations on the vector are threaded using POSIX threads
(Pthreads).

struct _N_VectorContent_Pthreads {

sunindextype length;

booleantype own_data;

realtype *data;

int num_threads;

};

The header file to include when using this module is nvector pthreads.h. The installed module
library to link to is libsundials nvecpthreads.lib where .lib is typically .so for shared libraries
and .a for static libraries.

6.5.1 NVECTOR PTHREADS accessor macros

The following macros are provided to access the content of an nvector pthreads vector. The suffix
PT in the names denotes the Pthreads version.

• NV CONTENT PT

This routine gives access to the contents of the Pthreads vector N Vector.

The assignment v cont = NV CONTENT PT(v) sets v cont to be a pointer to the Pthreads
N Vector content structure.

Implementation:

#define NV_CONTENT_PT(v) ((N_VectorContent_Pthreads)(v->content))

• NV OWN DATA PT, NV DATA PT, NV LENGTH PT, NV NUM THREADS PT

These macros give individual access to the parts of the content of a Pthreads N Vector.

The assignment v data = NV DATA PT(v) sets v data to be a pointer to the first component
of the data for the N Vector v. The assignment NV DATA PT(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH PT(v) sets v len to be the length of v. On the other hand,
the call NV LENGTH PT(v) = len v sets the length of v to be len v.

The assignment v num threads = NV NUM THREADS PT(v) sets v num threads to be the number
of threads from v. On the other hand, the call NV NUM THREADS PT(v) = num threads v sets
the number of threads for v to be num threads v.

6.5 The NVECTOR PTHREADS implementation 101

Implementation:

#define NV_OWN_DATA_PT(v) (NV_CONTENT_PT(v)->own_data)

#define NV_DATA_PT(v) (NV_CONTENT_PT(v)->data)

#define NV_LENGTH_PT(v) (NV_CONTENT_PT(v)->length)

#define NV_NUM_THREADS_PT(v) (NV_CONTENT_PT(v)->num_threads)

• NV Ith PT

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith PT(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith PT(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n− 1 for a vector of length n.

Implementation:

#define NV_Ith_PT(v,i) (NV_DATA_PT(v)[i])

6.5.2 NVECTOR PTHREADS functions

The nvector pthreads module defines Pthreads implementations of all vector operations listed in
Tables 6.2, 6.3, and 6.4. Their names are obtained from those in Tables 6.2, 6.3, and 6.4 by appending
the suffix Pthreads (e.g. N VDestroy Pthreads). All the standard vector operations listed in 6.2
are callable via the Fortran 2003 interface by prepending an ‘F’ (e.g. FN VDestroy Pthreads). The
module nvector pthreads provides the following additional user-callable routines:

N VNew Pthreads

Prototype N Vector N VNew Pthreads(sunindextype vec length, int num threads)

Description This function creates and allocates memory for a Pthreads N Vector. Arguments are
the vector length and number of threads.

F2003 Name This function is callable as FN VNew Pthreads when using the Fortran 2003 interface
module.

N VNewEmpty Pthreads

Prototype N Vector N VNewEmpty Pthreads(sunindextype vec length, int num threads)

Description This function creates a new Pthreads N Vector with an empty (NULL) data array.

F2003 Name This function is callable as FN VNewEmpty Pthreads when using the Fortran 2003 inter-
face module.

N VMake Pthreads

Prototype N Vector N VMake Pthreads(sunindextype vec length, realtype *v data,

int num threads);

Description This function creates and allocates memory for a Pthreads vector with user-provided
data array. This function does not allocate memory for v data itself.

F2003 Name This function is callable as FN VMake Pthreads when using the Fortran 2003 interface
module.

N VCloneVectorArray Pthreads

Prototype N Vector *N VCloneVectorArray Pthreads(int count, N Vector w)

Description This function creates (by cloning) an array of count Pthreads vectors.

102 Description of the NVECTOR module

N VCloneVectorArrayEmpty Pthreads

Prototype N Vector *N VCloneVectorArrayEmpty Pthreads(int count, N Vector w)

Description This function creates (by cloning) an array of count Pthreads vectors, each with an
empty (NULL) data array.

N VDestroyVectorArray Pthreads

Prototype void N VDestroyVectorArray Pthreads(N Vector *vs, int count)

Description This function frees memory allocated for the array of count variables of type N Vector

created with N VCloneVectorArray Pthreads or with
N VCloneVectorArrayEmpty Pthreads.

N VGetLength Pthreads

Prototype sunindextype N VGetLength Pthreads(N Vector v)

Description This function returns the number of vector elements.

F2003 Name This function is callable as FN VGetLength Pthreads when using the Fortran 2003 in-
terface module.

N VPrint Pthreads

Prototype void N VPrint Pthreads(N Vector v)

Description This function prints the content of a Pthreads vector to stdout.

F2003 Name This function is callable as FN VPrint Pthreads when using the Fortran 2003 interface
module.

N VPrintFile Pthreads

Prototype void N VPrintFile Pthreads(N Vector v, FILE *outfile)

Description This function prints the content of a Pthreads vector to outfile.

By default all fused and vector array operations are disabled in the nvector pthreads module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VNew Pthreads, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VNew Pthreads

will have the default settings for the nvector pthreads module.

N VEnableFusedOps Pthreads

Prototype int N VEnableFusedOps Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the Pthreads vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableLinearCombination Pthreads

Prototype int N VEnableLinearCombination Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the Pthreads vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

6.5 The NVECTOR PTHREADS implementation 103

N VEnableScaleAddMulti Pthreads

Prototype int N VEnableScaleAddMulti Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the Pthreads vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableDotProdMulti Pthreads

Prototype int N VEnableDotProdMulti Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the Pthreads vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableLinearSumVectorArray Pthreads

Prototype int N VEnableLinearSumVectorArray Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the Pthreads vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

N VEnableScaleVectorArray Pthreads

Prototype int N VEnableScaleVectorArray Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the Pthreads vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableConstVectorArray Pthreads

Prototype int N VEnableConstVectorArray Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the Pthreads vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableWrmsNormVectorArray Pthreads

Prototype int N VEnableWrmsNormVectorArray Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the Pthreads vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

N VEnableWrmsNormMaskVectorArray Pthreads

Prototype int N VEnableWrmsNormMaskVectorArray Pthreads(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the Pthreads vector. The return value is 0 for success and
-1 if the input vector or its ops structure are NULL.

104 Description of the NVECTOR module

N VEnableScaleAddMultiVectorArray Pthreads

Prototype int N VEnableScaleAddMultiVectorArray Pthreads(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the Pthreads vector. The return value is 0 for
success and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray Pthreads

Prototype int N VEnableLinearCombinationVectorArray Pthreads(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the Pthreads vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA PT(v) and then access v data[i] within the loop than
it is to use NV Ith PT(v,i) within the loop.

• N VNewEmpty Pthreads, N VMake Pthreads, and N VCloneVectorArrayEmpty Pthreads set the!

field own data = SUNFALSE. N VDestroy Pthreads and N VDestroyVectorArray Pthreads will
not attempt to free the pointer data for any N Vector with own data set to SUNFALSE. In such
a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector pthreads implementation that have!

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

6.5.3 NVECTOR PTHREADS Fortran interfaces

The nvector pthreads module provides a Fortran 2003 module as well as Fortran 77 style
interface functions for use from Fortran applications.

FORTRAN 2003 interface module

The nvector pthreads mod Fortran module defines interfaces to most nvector pthreads C func-
tions using the intrinsic iso c binding module which provides a standardized mechanism for interop-
erating with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function N VNew Pthreads is
interfaced as FN VNew Pthreads.

The Fortran 2003 nvector pthreads interface module can be accessed with the use statement,
i.e. use fnvector pthreads mod, and linking to the library libsundials fnvectorpthreads mod.lib
in addition to the C library. For details on where the library and module file fnvector pthreads mod.mod

are installed see Appendix A.

FORTRAN 77 interface functions

For solvers that include a Fortran interface module, the nvector pthreads module also includes
a Fortran-callable function FNVINITPTS(code, NEQ, NUMTHREADS, IER), to initialize this module.
Here code is an input solver id (1 for cvode, 2 for ida, 3 for kinsol, 4 for arkode); NEQ is the
problem size (declared so as to match C type long int); NUMTHREADS is the number of threads;
and IER is an error return flag equal 0 for success and -1 for failure.

6.6 The NVECTOR PARHYP implementation 105

6.6 The NVECTOR PARHYP implementation

The nvector parhyp implementation of the nvector module provided with sundials is a wrapper
around hypre’s ParVector class. Most of the vector kernels simply call hypre vector operations. The
implementation defines the content field of N Vector to be a structure containing the global and local
lengths of the vector, a pointer to an object of type HYPRE ParVector, an MPI communicator, and a
boolean flag own parvector indicating ownership of the hypre parallel vector object x.

struct _N_VectorContent_ParHyp {

sunindextype local_length;

sunindextype global_length;

booleantype own_parvector;

MPI_Comm comm;

HYPRE_ParVector x;

};

The header file to include when using this module is nvector parhyp.h. The installed module library
to link to is libsundials nvecparhyp.lib where .lib is typically .so for shared libraries and .a

for static libraries.

Unlike native sundials vector types, nvector parhyp does not provide macros to access its
member variables. Note that nvector parhyp requires sundials to be built with MPI support.

6.6.1 NVECTOR PARHYP functions

The nvector parhyp module defines implementations of all vector operations listed in Tables 6.2,
6.3, and 6.4, except for N VSetArrayPointer and N VGetArrayPointer, because accessing raw vector
data is handled by low-level hypre functions. As such, this vector is not available for use with sundials
Fortran interfaces. When access to raw vector data is needed, one should extract the hypre vector first,
and then use hypre methods to access the data. Usage examples of nvector parhyp are provided in
the cvAdvDiff non ph.c example program for cvode [19] and the ark diurnal kry ph.c example
program for arkode [24].

The names of parhyp methods are obtained from those in Tables 6.2, 6.3, and 6.4 by appending
the suffix ParHyp (e.g. N VDestroy ParHyp). The module nvector parhyp provides the following
additional user-callable routines:

N VNewEmpty ParHyp

Prototype N Vector N VNewEmpty ParHyp(MPI Comm comm, sunindextype local length,

sunindextype global length)

Description This function creates a new parhyp N Vector with the pointer to the hypre vector set
to NULL.

N VMake ParHyp

Prototype N Vector N VMake ParHyp(HYPRE ParVector x)

Description This function creates an N Vector wrapper around an existing hypre parallel vector. It
does not allocate memory for x itself.

N VGetVector ParHyp

Prototype HYPRE ParVector N VGetVector ParHyp(N Vector v)

Description This function returns the underlying hypre vector.

106 Description of the NVECTOR module

N VCloneVectorArray ParHyp

Prototype N Vector *N VCloneVectorArray ParHyp(int count, N Vector w)

Description This function creates (by cloning) an array of count parallel vectors.

N VCloneVectorArrayEmpty ParHyp

Prototype N Vector *N VCloneVectorArrayEmpty ParHyp(int count, N Vector w)

Description This function creates (by cloning) an array of count parallel vectors, each with an empty
(NULL) data array.

N VDestroyVectorArray ParHyp

Prototype void N VDestroyVectorArray ParHyp(N Vector *vs, int count)

Description This function frees memory allocated for the array of count variables of type N Vector

created with N VCloneVectorArray ParHyp or with N VCloneVectorArrayEmpty ParHyp.

N VPrint ParHyp

Prototype void N VPrint ParHyp(N Vector v)

Description This function prints the local content of a parhyp vector to stdout.

N VPrintFile ParHyp

Prototype void N VPrintFile ParHyp(N Vector v, FILE *outfile)

Description This function prints the local content of a parhyp vector to outfile.

By default all fused and vector array operations are disabled in the nvector parhyp module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VMake ParHyp, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VMake ParHyp

will have the default settings for the nvector parhyp module.

N VEnableFusedOps ParHyp

Prototype int N VEnableFusedOps ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array oper-
ations in the parhyp vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableLinearCombination ParHyp

Prototype int N VEnableLinearCombination ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the parhyp vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

6.6 The NVECTOR PARHYP implementation 107

N VEnableScaleAddMulti ParHyp

Prototype int N VEnableScaleAddMulti ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the parhyp vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableDotProdMulti ParHyp

Prototype int N VEnableDotProdMulti ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the parhyp vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableLinearSumVectorArray ParHyp

Prototype int N VEnableLinearSumVectorArray ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the parhyp vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleVectorArray ParHyp

Prototype int N VEnableScaleVectorArray ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the parhyp vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableConstVectorArray ParHyp

Prototype int N VEnableConstVectorArray ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the parhyp vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableWrmsNormVectorArray ParHyp

Prototype int N VEnableWrmsNormVectorArray ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the parhyp vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableWrmsNormMaskVectorArray ParHyp

Prototype int N VEnableWrmsNormMaskVectorArray ParHyp(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the parhyp vector. The return value is 0 for success and -1

if the input vector or its ops structure are NULL.

108 Description of the NVECTOR module

N VEnableScaleAddMultiVectorArray ParHyp

Prototype int N VEnableScaleAddMultiVectorArray ParHyp(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the parhyp vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray ParHyp

Prototype int N VEnableLinearCombinationVectorArray ParHyp(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the parhyp vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

• When there is a need to access components of an N Vector ParHyp, v, it is recommended to
extract the hypre vector via x vec = N VGetVector ParHyp(v) and then access components
using appropriate hypre functions.

• N VNewEmpty ParHyp, N VMake ParHyp, and N VCloneVectorArrayEmpty ParHyp set the field!

own parvector to SUNFALSE. N VDestroy ParHyp and N VDestroyVectorArray ParHyp will not
attempt to delete an underlying hypre vector for any N Vector with own parvector set to
SUNFALSE. In such a case, it is the user’s responsibility to delete the underlying vector.

• To maximize efficiency, vector operations in the nvector parhyp implementation that have!

more than one N Vector argument do not check for consistent internal representations of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

6.7 The NVECTOR PETSC implementation

The nvector petsc module is an nvector wrapper around the petsc vector. It defines the content
field of a N Vector to be a structure containing the global and local lengths of the vector, a pointer
to the petsc vector, an MPI communicator, and a boolean flag own data indicating ownership of the
wrapped petsc vector.

struct _N_VectorContent_Petsc {

sunindextype local_length;

sunindextype global_length;

booleantype own_data;

Vec *pvec;

MPI_Comm comm;

};

The header file to include when using this module is nvector petsc.h. The installed module library
to link to is libsundials nvecpetsc.lib where .lib is typically .so for shared libraries and .a for
static libraries.

Unlike native sundials vector types, nvector petsc does not provide macros to access its mem-
ber variables. Note that nvector petsc requires sundials to be built with MPI support.

6.7 The NVECTOR PETSC implementation 109

6.7.1 NVECTOR PETSC functions

The nvector petsc module defines implementations of all vector operations listed in Tables 6.2, 6.3,
and 6.4, except for N VGetArrayPointer and N VSetArrayPointer. As such, this vector cannot be
used with sundials Fortran interfaces. When access to raw vector data is needed, it is recommended
to extract the petsc vector first, and then use petsc methods to access the data. Usage examples of
nvector petsc are provided in example programs for ida [18].

The names of vector operations are obtained from those in Tables 6.2, 6.3, and 6.4 by appending
the suffix Petsc (e.g. N VDestroy Petsc). The module nvector petsc provides the following
additional user-callable routines:

N VNewEmpty Petsc

Prototype N Vector N VNewEmpty Petsc(MPI Comm comm, sunindextype local length,

sunindextype global length)

Description This function creates a new nvector wrapper with the pointer to the wrapped petsc
vector set to (NULL). It is used by the N VMake Petsc and N VClone Petsc implementa-
tions.

N VMake Petsc

Prototype N Vector N VMake Petsc(Vec *pvec)

Description This function creates and allocates memory for an nvector petsc wrapper around a
user-provided petsc vector. It does not allocate memory for the vector pvec itself.

N VGetVector Petsc

Prototype Vec *N VGetVector Petsc(N Vector v)

Description This function returns a pointer to the underlying petsc vector.

N VCloneVectorArray Petsc

Prototype N Vector *N VCloneVectorArray Petsc(int count, N Vector w)

Description This function creates (by cloning) an array of count nvector petsc vectors.

N VCloneVectorArrayEmpty Petsc

Prototype N Vector *N VCloneVectorArrayEmpty Petsc(int count, N Vector w)

Description This function creates (by cloning) an array of count nvector petsc vectors, each with
pointers to petsc vectors set to (NULL).

N VDestroyVectorArray Petsc

Prototype void N VDestroyVectorArray Petsc(N Vector *vs, int count)

Description This function frees memory allocated for the array of count variables of type N Vector

created with N VCloneVectorArray Petsc or with N VCloneVectorArrayEmpty Petsc.

N VPrint Petsc

Prototype void N VPrint Petsc(N Vector v)

Description This function prints the global content of a wrapped petsc vector to stdout.

110 Description of the NVECTOR module

N VPrintFile Petsc

Prototype void N VPrintFile Petsc(N Vector v, const char fname[])

Description This function prints the global content of a wrapped petsc vector to fname.

By default all fused and vector array operations are disabled in the nvector petsc module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VMake Petsc, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VMake Petsc

will have the default settings for the nvector petsc module.

N VEnableFusedOps Petsc

Prototype int N VEnableFusedOps Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array oper-
ations in the petsc vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableLinearCombination Petsc

Prototype int N VEnableLinearCombination Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the petsc vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleAddMulti Petsc

Prototype int N VEnableScaleAddMulti Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the petsc vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableDotProdMulti Petsc

Prototype int N VEnableDotProdMulti Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the petsc vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableLinearSumVectorArray Petsc

Prototype int N VEnableLinearSumVectorArray Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the petsc vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleVectorArray Petsc

Prototype int N VEnableScaleVectorArray Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the petsc vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

6.7 The NVECTOR PETSC implementation 111

N VEnableConstVectorArray Petsc

Prototype int N VEnableConstVectorArray Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the petsc vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableWrmsNormVectorArray Petsc

Prototype int N VEnableWrmsNormVectorArray Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the petsc vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableWrmsNormMaskVectorArray Petsc

Prototype int N VEnableWrmsNormMaskVectorArray Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the petsc vector. The return value is 0 for success and -1

if the input vector or its ops structure are NULL.

N VEnableScaleAddMultiVectorArray Petsc

Prototype int N VEnableScaleAddMultiVectorArray Petsc(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the petsc vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray Petsc

Prototype int N VEnableLinearCombinationVectorArray Petsc(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the petsc vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

• When there is a need to access components of an N Vector Petsc, v, it is recommeded to
extract the petsc vector via x vec = N VGetVector Petsc(v) and then access components
using appropriate petsc functions.

• The functions N VNewEmpty Petsc, N VMake Petsc, and N VCloneVectorArrayEmpty Petsc set !

the field own data to SUNFALSE. N VDestroy Petsc and N VDestroyVectorArray Petsc will not
attempt to free the pointer pvec for any N Vector with own data set to SUNFALSE. In such a
case, it is the user’s responsibility to deallocate the pvec pointer.

• To maximize efficiency, vector operations in the nvector petsc implementation that have !

more than one N Vector argument do not check for consistent internal representations of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

112 Description of the NVECTOR module

6.8 The NVECTOR CUDA implementation

The nvector cuda module is an experimental nvector implementation in the cuda language.
The module allows for sundials vector kernels to run on GPU devices. It is intended for users
who are already familiar with cuda and GPU programming. Building this vector module requires a
CUDA compiler and, by extension, a C++ compiler. The class Vector in the namespace suncudavec

manages the vector data layout:

template <class T, class I>

class Vector {

I size_;

I mem_size_;

I global_size_;

T* h_vec_;

T* d_vec_;

ThreadPartitioning<T, I>* partStream_;

ThreadPartitioning<T, I>* partReduce_;

bool ownPartitioning_;

bool ownData_;

bool managed_mem_;

SUNMPI_Comm comm_;

...

};

The class members are vector size (length), size of the vector data memory block, pointers to vector
data on the host and the device, pointers to ThreadPartitioning implementations that handle thread
partitioning for streaming and reduction vector kernels, a boolean flag that signals if the vector owns
the thread partitioning, a boolean flag that signals if the vector owns the data, a boolean flag that
signals if managed memory is used for the data arrays, and the MPI communicator. The class Vector
inherits from the empty structure

struct _N_VectorContent_Cuda {};

to interface the C++ class with the nvector C code. Due to the rapid progress of cuda development,
we expect that the suncudavec::Vector class will change frequently in future sundials releases. The
code is structured so that it can tolerate significant changes in the suncudavec::Vector class without
requiring changes to the user API.

When instantiated with N VNew Cuda, the class Vector will allocate memory on both the host and
the device. Alternatively, a user can provide host and device data arrays by using the N VMake Cuda

constructor. To use cuda managed memory, the constructors N VNewManaged Cuda and
N VMakeManaged Cuda are provided. Details on each of these constructors are provided below.

The nvector cuda module can be utilized for single-node parallelism or in a distributed context
with MPI. In the single-node case the header file to include nvector cuda.h and the library to
link to is libsundials nveccuda.lib . In the a distributed setting the header file to include is
nvector mpicuda.h and the library to link to is libsundials nvecmpicuda.lib . The extension,
.lib, is typically .so for shared libraries and .a for static libraries. Only one of these libraries may
be linked to when creating an executable or library. sundials must be built with MPI support if the
distributed library is desired.

6.8.1 NVECTOR CUDA functions

Unlike other native sundials vector types, nvector cuda does not provide macros to access its
member variables. Instead, user should use the accessor functions:

6.8 The NVECTOR CUDA implementation 113

N VGetLength Cuda

Prototype sunindextype N VGetLength Cuda(N Vector v)

Description This function returns the global length of the vector.

N VGetLocalLength Cuda

Prototype sunindextype N VGetLocalLength Cuda(N Vector v)

Description This function returns the local length of the vector.

Note: This function is for use in a distributed context and is defined in the header
nvector mpicuda.h and the library to link to is libsundials nvecmpicuda.lib.

N VGetHostArrayPointer Cuda

Prototype realtype *N VGetHostArrayPointer Cuda(N Vector v)

Description This function returns a pointer to the vector data on the host.

N VGetDeviceArrayPointer Cuda

Prototype realtype *N VGetDeviceArrayPointer Cuda(N Vector v)

Description This function returns a pointer to the vector data on the device.

N VGetMPIComm Cuda

Prototype MPI Comm N VGetMPIComm Cuda(N Vector v)

Description This function returns the MPI communicator for the vector.

Note: This function is for use in a distributed context and is defined in the header
nvector mpicuda.h and the library to link to is libsundials nvecmpicuda.lib.

N VIsManagedMemory Cuda

Prototype booleantype *N VIsManagedMemory Cuda(N Vector v)

Description This function returns a boolean flag indicating if the vector data is allocated in managed
memory or not.

The nvector cuda module defines implementations of all vector operations listed in Tables 6.2,
6.3, and 6.4, except for N VGetArrayPointer and N VSetArrayPointer. As such, this vector cannot be
used with the sundials Fortran interfaces, nor with the sundials direct solvers and preconditioners.
Instead, the nvector cuda module provides separate functions to access data on the host and on
the device. It also provides methods for copying from the host to the device and vice versa. Usage
examples of nvector cuda are provided in some example programs for cvode [19].

The names of vector operations are obtained from those in Tables 6.2, 6.3, and 6.4 by appending the
suffix Cuda (e.g. N VDestroy Cuda). The module nvector cuda provides the following functions:

N VNew Cuda

Single-node usage

Prototype N Vector N VNew Cuda(sunindextype length)

Description This function creates and allocates memory for a cuda N Vector. The vector data array
is allocated on both the host and device. In the single-node setting, the only input is
the vector length. This constructor is defined in the header nvector cuda.h and the
library to link to is libsundials nveccuda.lib.

Distributed-memory parallel usage

114 Description of the NVECTOR module

Prototype N Vector N VNew Cuda(MPI Comm comm, sunindextype local length,

sunindextype global length)

Description This function creates and allocates memory for a cuda N Vector. The vector data
array is allocated on both the host and device. When used in a distributed context
with MPI, the arguments are the MPI communicator, the local vector length, and the
global vector length. This constructor is defined in the header nvector mpicuda.h and
the library to link to is libsundials nvecmpicuda.lib.

N VNewManaged Cuda

Single-node usage

Prototype N Vector N VNewManaged Cuda(sunindextype length)

Description This function creates and allocates memory for a cuda N Vector on a single node. The
vector data array is allocated in managed memory. In the single-node setting, the only
input is the vector length. This constructor is defined in the header nvector cuda.h

and the library to link to is libsundials nveccuda.lib.

Distributed-memory parallel usage

Prototype N Vector N VNewManaged Cuda(MPI Comm comm, sunindextype local length,

sunindextype global length)

Description This function creates and allocates memory for a cuda N Vector on a single node. The
vector data array is allocated in managed memory. When used in a distributed context
with MPI, the arguments are the MPI communicator, the local vector lenght, and the
global vector length. This constructor is defined in the header nvector mpicuda.h and
the library to link to is libsundials nvecmpicuda.lib.

N VNewEmpty Cuda

Prototype N Vector N VNewEmpty Cuda()

Description This function creates a new nvector wrapper with the pointer to the wrapped cuda
vector set to NULL. It is used by the N VNew Cuda, N VMake Cuda, and N VClone Cuda

implementations.

N VMake Cuda

Single-node usage

Prototype N Vector N VMake Cuda(sunindextype length, realtype *h vdata,

realtype *d vdata)

Description This function creates an nvector cuda with user-supplied vector data arrays h vdata

and d vdata. This function does not allocate memory for data itself. In the single-
node setting, the inputs are the vector length, the host data array, and the device data.
This constructor is defined in the header nvector cuda.h and the library to link to is
libsundials nveccuda.lib.

Distributed-memory parallel usage

Prototype N Vector N VMake Cuda(MPI Comm comm, sunindextype local length,

sunindextype global length, realtype *h vdata,

realtype *d vdata)

Description This function creates an nvector cuda with user-supplied vector data arrays h vdata

and d vdata. This function does not allocate memory for data itself. When used in
a distributed context with MPI, the arguments are the MPI communicator, the local
vector lenght, the global vector length, the host data array, and the device data array.

6.8 The NVECTOR CUDA implementation 115

This constructor is defined in the header nvector mpicuda.h and the library to link to
is libsundials nvecmpicuda.lib.

N VMakeManaged Cuda

Single-node usage

Prototype N Vector N VMakeManaged Cuda(sunindextype length, realtype *vdata)

Description This function creates an nvector cuda with a user-supplied managed memory data
array. This function does not allocate memory for data itself. In the single-node setting,
the inputs are the vector length and the managed data array. This constructor is defined
in the header nvector cuda.h and the library to link to is libsundials nveccuda.lib.

Distributed-memory parallel usage

Prototype N Vector N VMakeManaged Cuda(MPI Comm comm, sunindextype local length,

sunindextype global length, realtype *vdata)

Description This function creates an nvector cuda with a user-supplied managed memory data
array. This function does not allocate memory for data itself. When used in a distributed
context with MPI, the arguments are the MPI communicator, the local vector lenght,
the global vector length, the managed data array. This constructor is defined in the
header nvector mpicuda.h and the library to link to is libsundials nvecmpicuda.lib.

The module nvector cuda also provides the following user-callable routines:

N VSetCudaStream Cuda

Prototype void N VSetCudaStream Cuda(N Vector v, cudaStream t *stream)

Description This function sets the cuda stream that all vector kernels will be launched on. By
default an nvector cuda uses the default cuda stream.

Note: All vectors used in a single instance of a SUNDIALS solver must use the same
cuda stream, and the cuda stream must be set prior to solver initialization. Addi-
tionally, if manually instantiating the stream and reduce ThreadPartitioning of a
suncudavec::Vector, ensure that they use the same cuda stream.

N VCopyToDevice Cuda

Prototype void N VCopyToDevice Cuda(N Vector v)

Description This function copies host vector data to the device.

N VCopyFromDevice Cuda

Prototype void N VCopyFromDevice Cuda(N Vector v)

Description This function copies vector data from the device to the host.

N VPrint Cuda

Prototype void N VPrint Cuda(N Vector v)

Description This function prints the content of a cuda vector to stdout.

116 Description of the NVECTOR module

N VPrintFile Cuda

Prototype void N VPrintFile Cuda(N Vector v, FILE *outfile)

Description This function prints the content of a cuda vector to outfile.

By default all fused and vector array operations are disabled in the nvector cuda module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to
first create a vector with N VNew Cuda, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VNew Cuda will
have the default settings for the nvector cuda module.

N VEnableFusedOps Cuda

Prototype int N VEnableFusedOps Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the cuda vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableLinearCombination Cuda

Prototype int N VEnableLinearCombination Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the cuda vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleAddMulti Cuda

Prototype int N VEnableScaleAddMulti Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the cuda vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableDotProdMulti Cuda

Prototype int N VEnableDotProdMulti Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the cuda vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableLinearSumVectorArray Cuda

Prototype int N VEnableLinearSumVectorArray Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the cuda vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleVectorArray Cuda

Prototype int N VEnableScaleVectorArray Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the cuda vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

6.9 The NVECTOR RAJA implementation 117

N VEnableConstVectorArray Cuda

Prototype int N VEnableConstVectorArray Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the cuda vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableWrmsNormVectorArray Cuda

Prototype int N VEnableWrmsNormVectorArray Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the cuda vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableWrmsNormMaskVectorArray Cuda

Prototype int N VEnableWrmsNormMaskVectorArray Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the cuda vector. The return value is 0 for success and -1 if
the input vector or its ops structure are NULL.

N VEnableScaleAddMultiVectorArray Cuda

Prototype int N VEnableScaleAddMultiVectorArray Cuda(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the cuda vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray Cuda

Prototype int N VEnableLinearCombinationVectorArray Cuda(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the cuda vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

• When there is a need to access components of an N Vector Cuda, v, it is recommeded to use
functions N VGetDeviceArrayPointer Cuda or N VGetHostArrayPointer Cuda.

• To maximize efficiency, vector operations in the nvector cuda implementation that have more !

than one N Vector argument do not check for consistent internal representations of these vectors.
It is the user’s responsibility to ensure that such routines are called with N Vector arguments
that were all created with the same internal representations.

6.9 The NVECTOR RAJA implementation

The nvector raja module is an experimental nvector implementation using the raja hardware
abstraction layer. In this implementation, raja allows for sundials vector kernels to run on GPU
devices. The module is intended for users who are already familiar with raja and GPU programming.
Building this vector module requires a C++11 compliant compiler and a CUDA software development
toolkit. Besides the cuda backend, raja has other backends such as serial, OpenMP, and OpenACC.

https://software.llnl.gov/RAJA/

118 Description of the NVECTOR module

These backends are not used in this sundials release. Class Vector in namespace sunrajavec

manages the vector data layout:

template <class T, class I>

class Vector {

I size_;

I mem_size_;

I global_size_;

T* h_vec_;

T* d_vec_;

SUNMPI_Comm comm_;

...

};

The class members are: vector size (length), size of the vector data memory block, the global vector
size (length), pointers to vector data on the host and on the device, and the MPI communicator. The
class Vector inherits from an empty structure

struct _N_VectorContent_Raja {

};

to interface the C++ class with the nvector C code. When instantiated, the class Vector will
allocate memory on both the host and the device. Due to the rapid progress of raja development, we
expect that the sunrajavec::Vector class will change frequently in future sundials releases. The
code is structured so that it can tolerate significant changes in the sunrajavec::Vector class without
requiring changes to the user API.

The nvector raja module can be utilized for single-node parallelism or in a distributed con-
text with MPI. The header file to include when using this module for single-node parallelism is
nvector raja.h. The header file to include when using this module in the distributed case is
nvector mpiraja.h. The installed module libraries to link to are libsundials nvecraja.lib in
the single-node case, or libsundials nvecmpicudaraja.lib in the distributed case. Only one one
of these libraries may be linked to when creating an executable or library. sundials must be built
with MPI support if the distributed library is desired.

6.9.1 NVECTOR RAJA functions

Unlike other native sundials vector types, nvector raja does not provide macros to access its
member variables. Instead, user should use the accessor functions:

N VGetLength Raja

Prototype sunindextype N VGetLength Raja(N Vector v)

Description This function returns the global length of the vector.

N VGetLocalLength Raja

Prototype sunindextype N VGetLocalLength Raja(N Vector v)

Description This function returns the local length of the vector.

Note: This function is for use in a distributed context and is defined in the header
nvector mpiraja.h and the library to link to is libsundials nvecmpicudaraja.lib.

N VGetHostArrayPointer Raja

Prototype realtype *N VGetHostArrayPointer Raja(N Vector v)

Description This function returns a pointer to the vector data on the host.

6.9 The NVECTOR RAJA implementation 119

N VGetDeviceArrayPointer Raja

Prototype realtype *N VGetDeviceArrayPointer Raja(N Vector v)

Description This function returns a pointer to the vector data on the device.

N VGetMPIComm Raja

Prototype MPI Comm N VGetMPIComm Raja(N Vector v)

Description This function returns the MPI communicator for the vector.

Note: This function is for use in a distributed context and is defined in the header
nvector mpiraja.h and the library to link to is libsundials nvecmpicudaraja.lib.

The nvector raja module defines the implementations of all vector operations listed in Tables
6.2, 6.3, and 6.4, except for N VDotProdMulti, N VWrmsNormVectorArray, and
N VWrmsNormMaskVectorArray as support for arrays of reduction vectors is not yet supported in raja.
These function will be added to the nvector raja implementation in the future. Additionally the
vector operations N VGetArrayPointer and N VSetArrayPointer are not implemented by the raja
vector. As such, this vector cannot be used with the sundials Fortran interfaces, nor with the
sundials direct solvers and preconditioners. The nvector raja module provides separate functions
to access data on the host and on the device. It also provides methods for copying data from the
host to the device and vice versa. Usage examples of nvector raja are provided in some example
programs for cvode [19].

The names of vector operations are obtained from those in Tables 6.2, 6.3, and 6.4, by append-
ing the suffix Raja (e.g. N VDestroy Raja). The module nvector raja provides the following
additional user-callable routines:

N VNew Raja

Single-node usage

Prototype N Vector N VNew Raja(sunindextype length)

Description This function creates and allocates memory for a cuda N Vector. The vector data array
is allocated on both the host and device. In the single-node setting, the only input is
the vector length. This constructor is defined in the header nvector raja.h and the
library to link to is libsundials nveccudaraja.lib.

Distributed-memory parallel usage

Prototype N Vector N VNew Raja(MPI Comm comm, sunindextype local length,

sunindextype global length)

Description This function creates and allocates memory for a cuda N Vector. The vector data
array is allocated on both the host and device. When used in a distributed context
with MPI, the arguments are the MPI communicator, the local vector lenght, and the
global vector length. This constructor is defined in the header nvector mpiraja.h and
the library to link to is libsundials nvecmpicudaraja.lib.

N VNewEmpty Raja

Prototype N Vector N VNewEmpty Raja()

Description This function creates a new nvector wrapper with the pointer to the wrapped raja
vector set to NULL. It is used by the N VNew Raja, N VMake Raja, and N VClone Raja

implementations.

120 Description of the NVECTOR module

N VMake Raja

Prototype N Vector N VMake Raja(N VectorContent Raja c)

Description This function creates and allocates memory for an nvector raja wrapper around a
user-provided sunrajavec::Vector class. Its only argument is of type
N VectorContent Raja, which is the pointer to the class.

N VCopyToDevice Raja

Prototype realtype *N VCopyToDevice Raja(N Vector v)

Description This function copies host vector data to the device.

N VCopyFromDevice Raja

Prototype realtype *N VCopyFromDevice Raja(N Vector v)

Description This function copies vector data from the device to the host.

N VPrint Raja

Prototype void N VPrint Raja(N Vector v)

Description This function prints the content of a raja vector to stdout.

N VPrintFile Raja

Prototype void N VPrintFile Raja(N Vector v, FILE *outfile)

Description This function prints the content of a raja vector to outfile.

By default all fused and vector array operations are disabled in the nvector raja module. The
following additional user-callable routines are provided to enable or disable fused and vector array
operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VNew Raja, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VNew Raja will
have the default settings for the nvector raja module.

N VEnableFusedOps Raja

Prototype int N VEnableFusedOps Raja(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the raja vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableLinearCombination Raja

Prototype int N VEnableLinearCombination Raja(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the raja vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

6.9 The NVECTOR RAJA implementation 121

N VEnableScaleAddMulti Raja

Prototype int N VEnableScaleAddMulti Raja(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the raja vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableLinearSumVectorArray Raja

Prototype int N VEnableLinearSumVectorArray Raja(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the raja vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N VEnableScaleVectorArray Raja

Prototype int N VEnableScaleVectorArray Raja(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the raja vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableConstVectorArray Raja

Prototype int N VEnableConstVectorArray Raja(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the raja vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N VEnableScaleAddMultiVectorArray Raja

Prototype int N VEnableScaleAddMultiVectorArray Raja(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the raja vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray Raja

Prototype int N VEnableLinearCombinationVectorArray Raja(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the raja vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

• When there is a need to access components of an N Vector Raja, v, it is recommeded to use
functions N VGetDeviceArrayPointer Raja or N VGetHostArrayPointer Raja.

• To maximize efficiency, vector operations in the nvector raja implementation that have more !

than one N Vector argument do not check for consistent internal representations of these vectors.
It is the user’s responsibility to ensure that such routines are called with N Vector arguments
that were all created with the same internal representations.

122 Description of the NVECTOR module

6.10 The NVECTOR OPENMPDEV implementation

In situations where a user has access to a device such as a GPU for offloading computation, sundials
provides an nvector implementation using OpenMP device offloading, called nvector openmpdev.

The nvector openmpdev implementation defines the content field of the N Vector to be a
structure containing the length of the vector, a pointer to the beginning of a contiguous data array
on the host, a pointer to the beginning of a contiguous data array on the device, and a boolean flag
own data which specifies the ownership of host and device data arrays.

struct _N_VectorContent_OpenMPDEV {

sunindextype length;

booleantype own_data;

realtype *host_data;

realtype *dev_data;

};

The header file to include when using this module is nvector openmpdev.h. The installed module
library to link to is libsundials nvecopenmpdev.lib where .lib is typically .so for shared libraries
and .a for static libraries.

6.10.1 NVECTOR OPENMPDEV accessor macros

The following macros are provided to access the content of an nvector openmpdev vector.

• NV CONTENT OMPDEV

This routine gives access to the contents of the nvector openmpdev vector N Vector.

The assignment v cont = NV CONTENT OMPDEV(v) sets v cont to be a pointer to the nvec-
tor openmpdev N Vector content structure.

Implementation:

#define NV_CONTENT_OMPDEV(v) ((N_VectorContent_OpenMPDEV)(v->content))

• NV OWN DATA OMPDEV, NV DATA HOST OMPDEV, NV DATA DEV OMPDEV, NV LENGTH OMPDEV

These macros give individual access to the parts of the content of an nvector openmpdev
N Vector.

The assignment v data = NV DATA HOST OMPDEV(v) sets v data to be a pointer to the first
component of the data on the host for the N Vector v. The assignment NV DATA HOST OMPDEV(v)

= v data sets the host component array of v to be v data by storing the pointer v data.

The assignment v dev data = NV DATA DEV OMPDEV(v) sets v dev data to be a pointer to the
first component of the data on the device for the N Vector v. The assignment NV DATA DEV OMPDEV(v)

= v dev data sets the device component array of v to be v dev data by storing the pointer
v dev data.

The assignment v len = NV LENGTH OMPDEV(v) sets v len to be the length of v. On the other
hand, the call NV LENGTH OMPDEV(v) = len v sets the length of v to be len v.

Implementation:

#define NV_OWN_DATA_OMPDEV(v) (NV_CONTENT_OMPDEV(v)->own_data)

#define NV_DATA_HOST_OMPDEV(v) (NV_CONTENT_OMPDEV(v)->host_data)

#define NV_DATA_DEV_OMPDEV(v) (NV_CONTENT_OMPDEV(v)->dev_data)

#define NV_LENGTH_OMPDEV(v) (NV_CONTENT_OMPDEV(v)->length)

6.10 The NVECTOR OPENMPDEV implementation 123

6.10.2 NVECTOR OPENMPDEV functions

The nvector openmpdev module defines OpenMP device offloading implementations of all vector
operations listed in Tables 6.2, 6.3, and 6.4, except for N VGetArrayPointer and N VSetArrayPointer.
As such, this vector cannot be used with the sundials Fortran interfaces, nor with the sundials direct
solvers and preconditioners. It also provides methods for copying from the host to the device and vice
versa.

The names of vector operations are obtained from those in Tables 6.2, 6.3, and 6.4 by appending
the suffix OpenMPDEV (e.g. N VDestroy OpenMPDEV). The module nvector openmpdev provides the
following additional user-callable routines:

N VNew OpenMPDEV

Prototype N Vector N VNew OpenMPDEV(sunindextype vec length)

Description This function creates and allocates memory for an nvector openmpdev N Vector.

N VNewEmpty OpenMPDEV

Prototype N Vector N VNewEmpty OpenMPDEV(sunindextype vec length)

Description This function creates a new nvector openmpdev N Vector with an empty (NULL) host
and device data arrays.

N VMake OpenMPDEV

Prototype N Vector N VMake OpenMPDEV(sunindextype vec length, realtype *h vdata,

realtype *d vdata)

Description This function creates an nvector openmpdev vector with user-supplied vector data
arrays h vdata and d vdata. This function does not allocate memory for data itself.

N VCloneVectorArray OpenMPDEV

Prototype N Vector *N VCloneVectorArray OpenMPDEV(int count, N Vector w)

Description This function creates (by cloning) an array of count nvector openmpdev vectors.

N VCloneVectorArrayEmpty OpenMPDEV

Prototype N Vector *N VCloneVectorArrayEmpty OpenMPDEV(int count, N Vector w)

Description This function creates (by cloning) an array of count nvector openmpdev vectors,
each with an empty (NULL) data array.

N VDestroyVectorArray OpenMPDEV

Prototype void N VDestroyVectorArray OpenMPDEV(N Vector *vs, int count)

Description This function frees memory allocated for the array of count variables of type N Vector

created with N VCloneVectorArray OpenMPDEV or with
N VCloneVectorArrayEmpty OpenMPDEV.

N VGetLength OpenMPDEV

Prototype sunindextype N VGetLength OpenMPDEV(N Vector v)

Description This function returns the number of vector elements.

124 Description of the NVECTOR module

N VGetHostArrayPointer OpenMPDEV

Prototype realtype *N VGetHostArrayPointer OpenMPDEV(N Vector v)

Description This function returns a pointer to the host data array.

N VGetDeviceArrayPointer OpenMPDEV

Prototype realtype *N VGetDeviceArrayPointer OpenMPDEV(N Vector v)

Description This function returns a pointer to the device data array.

N VPrint OpenMPDEV

Prototype void N VPrint OpenMPDEV(N Vector v)

Description This function prints the content of an nvector openmpdev vector to stdout.

N VPrintFile OpenMPDEV

Prototype void N VPrintFile OpenMPDEV(N Vector v, FILE *outfile)

Description This function prints the content of an nvector openmpdev vector to outfile.

N VCopyToDevice OpenMPDEV

Prototype void N VCopyToDevice OpenMPDEV(N Vector v)

Description This function copies the content of an nvector openmpdev vector’s host data array
to the device data array.

N VCopyFromDevice OpenMPDEV

Prototype void N VCopyFromDevice OpenMPDEV(N Vector v)

Description This function copies the content of an nvector openmpdev vector’s device data array
to the host data array.

By default all fused and vector array operations are disabled in the nvector openmpdev module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N VNew OpenMPDEV, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N VNew OpenMPDEV

will have the default settings for the nvector openmpdev module.

N VEnableFusedOps OpenMPDEV

Prototype int N VEnableFusedOps OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the nvector openmpdev vector. The return value is 0 for success and -1

if the input vector or its ops structure are NULL.

N VEnableLinearCombination OpenMPDEV

Prototype int N VEnableLinearCombination OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the nvector openmpdev vector. The return value is 0 for success and
-1 if the input vector or its ops structure are NULL.

6.10 The NVECTOR OPENMPDEV implementation 125

N VEnableScaleAddMulti OpenMPDEV

Prototype int N VEnableScaleAddMulti OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the nvector openmpdev vector. The return value
is 0 for success and -1 if the input vector or its ops structure are NULL.

N VEnableDotProdMulti OpenMPDEV

Prototype int N VEnableDotProdMulti OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the nvector openmpdev vector. The return value is 0 for success and
-1 if the input vector or its ops structure are NULL.

N VEnableLinearSumVectorArray OpenMPDEV

Prototype int N VEnableLinearSumVectorArray OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the nvector openmpdev vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableScaleVectorArray OpenMPDEV

Prototype int N VEnableScaleVectorArray OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the nvector openmpdev vector. The return value is 0 for success and -1 if
the input vector or its ops structure are NULL.

N VEnableConstVectorArray OpenMPDEV

Prototype int N VEnableConstVectorArray OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the nvector openmpdev vector. The return value is 0 for success and -1 if
the input vector or its ops structure are NULL.

N VEnableWrmsNormVectorArray OpenMPDEV

Prototype int N VEnableWrmsNormVectorArray OpenMPDEV(N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the nvector openmpdev vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N VEnableWrmsNormMaskVectorArray OpenMPDEV

Prototype int N VEnableWrmsNormMaskVectorArray OpenMPDEV(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the nvector openmpdev vector. The return value is 0 for
success and -1 if the input vector or its ops structure are NULL.

126 Description of the NVECTOR module

N VEnableScaleAddMultiVectorArray OpenMPDEV

Prototype int N VEnableScaleAddMultiVectorArray OpenMPDEV(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the nvector openmpdev vector. The return
value is 0 for success and -1 if the input vector or its ops structure are NULL.

N VEnableLinearCombinationVectorArray OpenMPDEV

Prototype int N VEnableLinearCombinationVectorArray OpenMPDEV(N Vector v,

booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the nvector openmpdev vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

Notes

• When looping over the components of an N Vector v, it is most efficient to first obtain the
component array via h data = NV DATA HOST OMPDEV(v) for the host array or
d data = NV DATA DEV OMPDEV(v) for the device array and then access h data[i] or d data[i]

within the loop.

• When accessing individual components of an N Vector v on the host remember to first copy the
array back from the device with N VCopyFromDevice OpenMPDEV(v) to ensure the array is up
to date.

• N VNewEmpty OpenMPDEV, N VMake OpenMPDEV, and N VCloneVectorArrayEmpty OpenMPDEV set!

the field own data = SUNFALSE. N VDestroy OpenMPDEV and N VDestroyVectorArray OpenMPDEV

will not attempt to free the pointer data for any N Vector with own data set to SUNFALSE. In
such a case, it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector openmpdev implementation that!

have more than one N Vector argument do not check for consistent internal representation of
these vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

6.11 The NVECTOR TRILINOS implementation

The nvector trilinos module is an nvector wrapper around the Trilinos Tpetra vector. The
interface to Tpetra is implemented in the Sundials::TpetraVectorInterface class. This class
simply stores a reference counting pointer to a Tpetra vector and inherits from an empty structure

struct _N_VectorContent_Trilinos {};

to interface the C++ class with the nvector C code. A pointer to an instance of this class is kept in
the content field of the N Vector object, to ensure that the Tpetra vector is not deleted for as long
as the N Vector object exists.

The Tpetra vector type in the Sundials::TpetraVectorInterface class is defined as:

typedef Tpetra::Vector<realtype, sunindextype, sunindextype> vector_type;

The Tpetra vector will use the sundials-specified realtype as its scalar type, and it will use
sunindextype as the global and the local ordinal types. This type definition will use Tpetra’s default
node type. Available Kokkos node types in Trilinos 12.14 release are serial (single thread), OpenMP,

https://github.com/trilinos/Trilinos

6.12 NVECTOR Examples 127

Pthread, and cuda. The default node type is selected when building the Kokkos package. For exam-
ple, the Tpetra vector will use a cuda node if Tpetra was built with cuda support and the cuda
node was selected as the default when Tpetra was built.

The header file to include when using this module is nvector trilinos.h. The installed module
library to link to is libsundials nvectrilinos.lib where .lib is typically .so for shared libraries
and .a for static libraries.

The nvector trilinos module defines implementations of all vector operations listed in Table
6.2, except for N_VGetArrayPointer and N_VSetArrayPointer. As such, this vector cannot be used
with sundials Fortran interfaces, nor with the sundials direct solvers and preconditioners. When
access to raw vector data is needed, it is recommended to extract the Trilinos Tpetra vector first,
and then use Tpetra vector methods to access the data. Usage examples of nvector trilinos are
provided in example programs for ida [18].

The names of vector operations are obtained from those in Table 6.2 by appending the suffix
Trilinos (e.g. N VDestroy Trilinos). Vector operations call existing Tpetra::Vector methods

when available. Vector operations specific to sundials are implemented as standalone functions in
the namespace Sundials::TpetraVector, located in the file SundialsTpetraVectorKernels.hpp.
The module nvector trilinos provides the following additional user-callable functions:

• N VGetVector Trilinos

This C++ function takes an N Vector as the argument and returns a reference counting pointer
to the underlying Tpetra vector. This is a standalone function defined in the global namespace.

Teuchos::RCP<vector_type> N_VGetVector_Trilinos(N_Vector v);

• N VMake Trilinos

This C++ function creates and allocates memory for an nvector trilinos wrapper around a
user-provided Tpetra vector. This is a standalone function defined in the global namespace.

N_Vector N_VMake_Trilinos(Teuchos::RCP<vector_type> v);

Notes

• The template parameter vector type should be set as:
typedef Sundials::TpetraVectorInterface::vector_type vector_type

This will ensure that data types used in Tpetra vector match those in sundials.

• When there is a need to access components of an N Vector Trilinos, v, it is recommeded
to extract the Trilinos vector object via x vec = N VGetVector Trilinos(v) and then access
components using the appropriate Trilinos functions.

• The functions N VDestroy Trilinos and N VDestroyVectorArray Trilinos only delete the
N Vector wrapper. The underlying Tpetra vector object will exist for as long as there is at least
one reference to it.

6.12 NVECTOR Examples

There are NVector examples that may be installed for the implementations provided with sundials.
Each implementation makes use of the functions in test nvector.c. These example functions show
simple usage of the NVector family of functions. The input to the examples are the vector length,
number of threads (if threaded implementation), and a print timing flag.
The following is a list of the example functions in test nvector.c:

• Test N VClone: Creates clone of vector and checks validity of clone.

• Test N VCloneEmpty: Creates clone of empty vector and checks validity of clone.

128 Description of the NVECTOR module

• Test N VCloneVectorArray: Creates clone of vector array and checks validity of cloned array.

• Test N VCloneVectorArray: Creates clone of empty vector array and checks validity of cloned
array.

• Test N VGetArrayPointer: Get array pointer.

• Test N VSetArrayPointer: Allocate new vector, set pointer to new vector array, and check
values.

• Test N VLinearSum Case 1a: Test y = x + y

• Test N VLinearSum Case 1b: Test y = -x + y

• Test N VLinearSum Case 1c: Test y = ax + y

• Test N VLinearSum Case 2a: Test x = x + y

• Test N VLinearSum Case 2b: Test x = x - y

• Test N VLinearSum Case 2c: Test x = x + by

• Test N VLinearSum Case 3: Test z = x + y

• Test N VLinearSum Case 4a: Test z = x - y

• Test N VLinearSum Case 4b: Test z = -x + y

• Test N VLinearSum Case 5a: Test z = x + by

• Test N VLinearSum Case 5b: Test z = ax + y

• Test N VLinearSum Case 6a: Test z = -x + by

• Test N VLinearSum Case 6b: Test z = ax - y

• Test N VLinearSum Case 7: Test z = a(x + y)

• Test N VLinearSum Case 8: Test z = a(x - y)

• Test N VLinearSum Case 9: Test z = ax + by

• Test N VConst: Fill vector with constant and check result.

• Test N VProd: Test vector multiply: z = x * y

• Test N VDiv: Test vector division: z = x / y

• Test N VScale: Case 1: scale: x = cx

• Test N VScale: Case 2: copy: z = x

• Test N VScale: Case 3: negate: z = -x

• Test N VScale: Case 4: combination: z = cx

• Test N VAbs: Create absolute value of vector.

• Test N VAddConst: add constant vector: z = c + x

• Test N VDotProd: Calculate dot product of two vectors.

• Test N VMaxNorm: Create vector with known values, find and validate the max norm.

6.12 NVECTOR Examples 129

• Test N VWrmsNorm: Create vector of known values, find and validate the weighted root mean
square.

• Test N VWrmsNormMask: Create vector of known values, find and validate the weighted root
mean square using all elements except one.

• Test N VMin: Create vector, find and validate the min.

• Test N VWL2Norm: Create vector, find and validate the weighted Euclidean L2 norm.

• Test N VL1Norm: Create vector, find and validate the L1 norm.

• Test N VCompare: Compare vector with constant returning and validating comparison vector.

• Test N VInvTest: Test z[i] = 1 / x[i]

• Test N VConstrMask: Test mask of vector x with vector c.

• Test N VMinQuotient: Fill two vectors with known values. Calculate and validate minimum
quotient.

• Test N VLinearCombination Case 1a: Test x = a x

• Test N VLinearCombination Case 1b: Test z = a x

• Test N VLinearCombination Case 2a: Test x = a x + b y

• Test N VLinearCombination Case 2b: Test z = a x + b y

• Test N VLinearCombination Case 3a: Test x = x + a y + b z

• Test N VLinearCombination Case 3b: Test x = a x + b y + c z

• Test N VLinearCombination Case 3c: Test w = a x + b y + c z

• Test N VScaleAddMulti Case 1a: y = a x + y

• Test N VScaleAddMulti Case 1b: z = a x + y

• Test N VScaleAddMulti Case 2a: Y[i] = c[i] x + Y[i], i = 1,2,3

• Test N VScaleAddMulti Case 2b: Z[i] = c[i] x + Y[i], i = 1,2,3

• Test N VDotProdMulti Case 1: Calculate the dot product of two vectors

• Test N VDotProdMulti Case 2: Calculate the dot product of one vector with three other vectors
in a vector array.

• Test N VLinearSumVectorArray Case 1: z = a x + b y

• Test N VLinearSumVectorArray Case 2a: Z[i] = a X[i] + b Y[i]

• Test N VLinearSumVectorArray Case 2b: X[i] = a X[i] + b Y[i]

• Test N VLinearSumVectorArray Case 2c: Y[i] = a X[i] + b Y[i]

• Test N VScaleVectorArray Case 1a: y = c y

• Test N VScaleVectorArray Case 1b: z = c y

• Test N VScaleVectorArray Case 2a: Y[i] = c[i] Y[i]

• Test N VScaleVectorArray Case 2b: Z[i] = c[i] Y[i]

• Test N VScaleVectorArray Case 1a: z = c

130 Description of the NVECTOR module

• Test N VScaleVectorArray Case 1b: Z[i] = c

• Test N VWrmsNormVectorArray Case 1a: Create a vector of know values, find and validate the
weighted root mean square norm.

• Test N VWrmsNormVectorArray Case 1b: Create a vector array of three vectors of know values,
find and validate the weighted root mean square norm of each.

• Test N VWrmsNormMaskVectorArray Case 1a: Create a vector of know values, find and validate
the weighted root mean square norm using all elements except one.

• Test N VWrmsNormMaskVectorArray Case 1b: Create a vector array of three vectors of know
values, find and validate the weighted root mean square norm of each using all elements except
one.

• Test N VScaleAddMultiVectorArray Case 1a: y = a x + y

• Test N VScaleAddMultiVectorArray Case 1b: z = a x + y

• Test N VScaleAddMultiVectorArray Case 2a: Y[j][0] = a[j] X[0] + Y[j][0]

• Test N VScaleAddMultiVectorArray Case 2b: Z[j][0] = a[j] X[0] + Y[j][0]

• Test N VScaleAddMultiVectorArray Case 3a: Y[0][i] = a[0] X[i] + Y[0][i]

• Test N VScaleAddMultiVectorArray Case 3b: Z[0][i] = a[0] X[i] + Y[0][i]

• Test N VScaleAddMultiVectorArray Case 4a: Y[j][i] = a[j] X[i] + Y[j][i]

• Test N VScaleAddMultiVectorArray Case 4b: Z[j][i] = a[j] X[i] + Y[j][i]

• Test N VLinearCombinationVectorArray Case 1a: x = a x

• Test N VLinearCombinationVectorArray Case 1b: z = a x

• Test N VLinearCombinationVectorArray Case 2a: x = a x + b y

• Test N VLinearCombinationVectorArray Case 2b: z = a x + b y

• Test N VLinearCombinationVectorArray Case 3a: x = a x + b y + c z

• Test N VLinearCombinationVectorArray Case 3b: w = a x + b y + c z

• Test N VLinearCombinationVectorArray Case 4a: X[0][i] = c[0] X[0][i]

• Test N VLinearCombinationVectorArray Case 4b: Z[i] = c[0] X[0][i]

• Test N VLinearCombinationVectorArray Case 5a: X[0][i] = c[0] X[0][i] + c[1] X[1][i]

• Test N VLinearCombinationVectorArray Case 5b: Z[i] = c[0] X[0][i] + c[1] X[1][i]

• Test N VLinearCombinationVectorArray Case 6a: X[0][i] = X[0][i] + c[1] X[1][i] + c[2] X[2][i]

• Test N VLinearCombinationVectorArray Case 6b: X[0][i] = c[0] X[0][i] + c[1] X[1][i] + c[2]
X[2][i]

• Test N VLinearCombinationVectorArray Case 6c: Z[i] = c[0] X[0][i] + c[1] X[1][i] + c[2] X[2][i]

Chapter 7

Description of the SUNMatrix
module

For problems that involve direct methods for solving linear systems, the sundials solvers not only op-
erate on generic vectors, but also on generic matrices (of type SUNMatrix), through a set of operations
defined by the particular sunmatrix implementation. Users can provide their own specific imple-
mentation of the sunmatrix module, particularly in cases where they provide their own nvector
and/or linear solver modules, and require matrices that are compatible with those implementations.
Alternately, we provide three sunmatrix implementations: dense, banded, and sparse. The generic
operations are described below, and descriptions of the implementations provided with sundials
follow.

The generic SUNMatrix type has been modeled after the object-oriented style of the generic
N Vector type. Specifically, a generic SUNMatrix is a pointer to a structure that has an implementation-
dependent content field containing the description and actual data of the matrix, and an ops field
pointing to a structure with generic matrix operations. The type SUNMatrix is defined as

typedef struct _generic_SUNMatrix *SUNMatrix;

struct _generic_SUNMatrix {

void *content;

struct _generic_SUNMatrix_Ops *ops;

};

The generic SUNMatrix Ops structure is essentially a list of pointers to the various actual matrix
operations, and is defined as

struct _generic_SUNMatrix_Ops {

SUNMatrix_ID (*getid)(SUNMatrix);

SUNMatrix (*clone)(SUNMatrix);

void (*destroy)(SUNMatrix);

int (*zero)(SUNMatrix);

int (*copy)(SUNMatrix, SUNMatrix);

int (*scaleadd)(realtype, SUNMatrix, SUNMatrix);

int (*scaleaddi)(realtype, SUNMatrix);

int (*matvec)(SUNMatrix, N_Vector, N_Vector);

int (*space)(SUNMatrix, long int*, long int*);

};

The generic sunmatrix module defines and implements the matrix operations acting on SUNMatrix

objects. These routines are nothing but wrappers for the matrix operations defined by a particular
sunmatrix implementation, which are accessed through the ops field of the SUNMatrix structure. To

132 Description of the SUNMatrix module

Table 7.1: Identifiers associated with matrix kernels supplied with sundials.

Matrix ID Matrix type ID Value
SUNMATRIX DENSE Dense M× N matrix 0
SUNMATRIX BAND Band M× M matrix 1
SUNMATRIX SPARSE Sparse (CSR or CSC) M× N matrix 2
SUNMATRIX CUSTOM User-provided custom matrix 3

illustrate this point we show below the implementation of a typical matrix operation from the generic
sunmatrix module, namely SUNMatZero, which sets all values of a matrix A to zero, returning a flag
denoting a successful/failed operation:

int SUNMatZero(SUNMatrix A)

{

return((int) A->ops->zero(A));

}

Table 7.2 contains a complete list of all matrix operations defined by the generic sunmatrix module.
A particular implementation of the sunmatrix module must:

• Specify the content field of the SUNMatrix object.

• Define and implement a minimal subset of the matrix operations. See the documentation for
each sundials solver to determine which sunmatrix operations they require.

Note that the names of these routines should be unique to that implementation in order to
permit using more than one sunmatrix module (each with different SUNMatrix internal data
representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free a
SUNMatrix with the new content field and with ops pointing to the new matrix operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined
SUNMatrix (e.g., a routine to print the content for debugging purposes).

• Optionally, provide accessor macros or functions as needed for that particular implementation
to access different parts of the content field of the newly defined SUNMatrix.

Each sunmatrix implementation included in sundials has a unique identifier specified in enu-
meration and shown in Table 7.1. It is recommended that a user-supplied sunmatrix implementation
use the SUNMATRIX CUSTOM identifier.

Table 7.2: Description of the SUNMatrix operations

Name Usage and Description

SUNMatGetID id = SUNMatGetID(A);

Returns the type identifier for the matrix A. It is used to determine the ma-
trix implementation type (e.g. dense, banded, sparse,. . .) from the abstract
SUNMatrix interface. This is used to assess compatibility with sundials-
provided linear solver implementations. Returned values are given in the
Table 7.1.

continued on next page

133

Name Usage and Description

SUNMatClone B = SUNMatClone(A);

Creates a new SUNMatrix of the same type as an existing matrix A and sets
the ops field. It does not copy the matrix, but rather allocates storage for
the new matrix.

SUNMatDestroy SUNMatDestroy(A);

Destroys the SUNMatrix A and frees memory allocated for its internal data.

SUNMatSpace ier = SUNMatSpace(A, &lrw, &liw);

Returns the storage requirements for the matrix A. lrw is a long int con-
taining the number of realtype words and liw is a long int containing
the number of integer words. The return value is an integer flag denoting
success/failure of the operation.
This function is advisory only, for use in determining a user’s total space
requirements; it could be a dummy function in a user-supplied sunmatrix
module if that information is not of interest.

SUNMatZero ier = SUNMatZero(A);

Performs the operation Aij = 0 for all entries of the matrix A. The return
value is an integer flag denoting success/failure of the operation.

SUNMatCopy ier = SUNMatCopy(A,B);

Performs the operation Bij = Ai,j for all entries of the matrices A and B.
The return value is an integer flag denoting success/failure of the operation.

SUNMatScaleAdd ier = SUNMatScaleAdd(c, A, B);

Performs the operation A = cA + B. The return value is an integer flag
denoting success/failure of the operation.

SUNMatScaleAddI ier = SUNMatScaleAddI(c, A);

Performs the operation A = cA + I. The return value is an integer flag
denoting success/failure of the operation.

SUNMatMatvec ier = SUNMatMatvec(A, x, y);

Performs the matrix-vector product operation, y = Ax. It should only be
called with vectors x and y that are compatible with the matrix A – both in
storage type and dimensions. The return value is an integer flag denoting
success/failure of the operation.

We note that not all sunmatrix types are compatible with all nvector types provided with
sundials. This is primarily due to the need for compatibility within the SUNMatMatvec routine;
however, compatibility between sunmatrix and nvector implementations is more crucial when
considering their interaction within sunlinsol objects, as will be described in more detail in Chapter
8. More specifically, in Table 7.3 we show the matrix interfaces available as sunmatrix modules, and
the compatible vector implementations.

Table 7.3: sundials matrix interfaces and vector implementations that can be used for each.

Matrix
Interface

Serial Parallel
(MPI)

OpenMP pThreads hypre
Vec.

petsc
Vec.

cuda raja User
Suppl.

Dense X X X X

continued on next page

134 Description of the SUNMatrix module

Matrix
Interface

Serial Parallel
(MPI)

OpenMP pThreads hypre
Vec.

petsc
Vec.

cuda raja User
Suppl.

Band X X X X

Sparse X X X X

User supplied X X X X X X X X X

7.1 SUNMatrix functions used by KINSOL

In Table 7.4 below, we list the matrix functions in the sunmatrix module used within the kinsol
package. The table also shows, for each function, which of the code modules uses the function. The
main kinsol integrator does not call any sunmatrix functions directly, so the table columns are
specific to the kinls interface and the kinbbdpre preconditioner module. We further note that the
kinls interface only utilizes these routines when supplied with a matrix-based linear solver, i.e., the
sunmatrix object passed to KINSetLinearSolver was not NULL.

At this point, we should emphasize that the kinsol user does not need to know anything about
the usage of matrix functions by the kinsol code modules in order to use kinsol. The information
is presented as an implementation detail for the interested reader.

Table 7.4: List of matrix functions usage by kinsol code modules

k
in
l
s

k
in
b
b
d
p
r
e

SUNMatGetID X
SUNMatDestroy X

SUNMatZero X X
SUNMatSpace †

The matrix functions listed in Table 7.2 with a † symbol are optionally used, in that these are only
called if they are implemented in the sunmatrix module that is being used (i.e. their function pointers
are non-NULL). The matrix functions listed in Table 7.2 that are not used by kinsol are: SUNMatCopy,
SUNMatClone, SUNMatScaleAdd, SUNMatScaleAddI and SUNMatMatvec. Therefore a user-supplied
sunmatrix module for kinsol could omit these functions.

We note that the kinbbdpre preconditioner module is hard-coded to use the sundials-supplied
band sunmatrix type, so the most useful information above for user-supplied sunmatrix implemen-
tations is the column relating the kinls requirements.

7.2 The SUNMatrix Dense implementation

The dense implementation of the sunmatrix module provided with sundials, sunmatrix dense,
defines the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_Dense {

sunindextype M;

sunindextype N;

realtype *data;

sunindextype ldata;

realtype **cols;

};

7.2 The SUNMatrix Dense implementation 135

These entries of the content field contain the following information:
M - number of rows

N - number of columns

data - pointer to a contiguous block of realtype variables. The elements of the dense matrix are
stored columnwise, i.e. the (i,j)-th element of a dense sunmatrix A (with 0 ≤ i < M and 0 ≤
j < N) may be accessed via data[j*M+i].

ldata - length of the data array (= M·N).

cols - array of pointers. cols[j] points to the first element of the j-th column of the matrix in the
array data. The (i,j)-th element of a dense sunmatrix A (with 0 ≤ i < M and 0 ≤ j < N)
may be accessed via cols[j][i].

The header file to include when using this module is sunmatrix/sunmatrix dense.h. The sunma-
trix dense module is accessible from all sundials solvers without linking to the
libsundials sunmatrixdense module library.

7.2.1 SUNMatrix Dense accessor macros

The following macros are provided to access the content of a sunmatrix dense matrix. The prefix
SM in the names denotes that these macros are for SUNMatrix implementations, and the suffix D

denotes that these are specific to the dense version.

• SM CONTENT D

This macro gives access to the contents of the dense SUNMatrix.

The assignment A cont = SM CONTENT D(A) sets A cont to be a pointer to the dense SUNMatrix

content structure.

Implementation:

#define SM_CONTENT_D(A) ((SUNMatrixContent_Dense)(A->content))

• SM ROWS D, SM COLUMNS D, and SM LDATA D

These macros give individual access to various lengths relevant to the content of a dense
SUNMatrix.

These may be used either to retrieve or to set these values. For example, the assignment A rows

= SM ROWS D(A) sets A rows to be the number of rows in the matrix A. Similarly, the assignment
SM COLUMNS D(A) = A cols sets the number of columns in A to equal A cols.

Implementation:

#define SM_ROWS_D(A) (SM_CONTENT_D(A)->M)

#define SM_COLUMNS_D(A) (SM_CONTENT_D(A)->N)

#define SM_LDATA_D(A) (SM_CONTENT_D(A)->ldata)

• SM DATA D and SM COLS D

These macros give access to the data and cols pointers for the matrix entries.

The assignment A data = SM DATA D(A) sets A data to be a pointer to the first component of
the data array for the dense SUNMatrix A. The assignment SM DATA D(A) = A data sets the data
array of A to be A data by storing the pointer A data.

Similarly, the assignment A cols = SM COLS D(A) sets A cols to be a pointer to the array of
column pointers for the dense SUNMatrix A. The assignment SM COLS D(A) = A cols sets the
column pointer array of A to be A cols by storing the pointer A cols.

Implementation:

#define SM_DATA_D(A) (SM_CONTENT_D(A)->data)

#define SM_COLS_D(A) (SM_CONTENT_D(A)->cols)

136 Description of the SUNMatrix module

• SM COLUMN D and SM ELEMENT D

These macros give access to the individual columns and entries of the data array of a dense
SUNMatrix.

The assignment col j = SM COLUMN D(A,j) sets col j to be a pointer to the first entry of
the j-th column of the M × N dense matrix A (with 0 ≤ j < N). The type of the expression
SM COLUMN D(A,j) is realtype *. The pointer returned by the call SM COLUMN D(A,j) can be
treated as an array which is indexed from 0 to M− 1.

The assignments SM ELEMENT D(A,i,j) = a ij and a ij = SM ELEMENT D(A,i,j) reference the
(i,j)-th element of the M× N dense matrix A (with 0 ≤ i < M and 0 ≤ j < N).

Implementation:

#define SM_COLUMN_D(A,j) ((SM_CONTENT_D(A)->cols)[j])

#define SM_ELEMENT_D(A,i,j) ((SM_CONTENT_D(A)->cols)[j][i])

7.2.2 SUNMatrix Dense functions

The sunmatrix dense module defines dense implementations of all matrix operations listed in Ta-
ble 7.2. Their names are obtained from those in Table 7.2 by appending the suffix Dense (e.g.
SUNMatCopy Dense). All the standard matrix operations listed in 7.2 with the suffix Dense appended
are callable via the Fortran 2003 interface by prepending an ‘F’ (e.g. FSUNMatCopy Dense).

The module sunmatrix dense provides the following additional user-callable routines:

SUNDenseMatrix

Prototype SUNMatrix SUNDenseMatrix(sunindextype M, sunindextype N)

Description This constructor function creates and allocates memory for a dense SUNMatrix. Its
arguments are the number of rows, M, and columns, N, for the dense matrix.

F2003 Name This function is callable as FSUNDenseMatrix when using the Fortran 2003 interface
module.

SUNDenseMatrix Print

Prototype void SUNDenseMatrix Print(SUNMatrix A, FILE* outfile)

Description This function prints the content of a dense SUNMatrix to the output stream specified
by outfile. Note: stdout or stderr may be used as arguments for outfile to print
directly to standard output or standard error, respectively.

SUNDenseMatrix Rows

Prototype sunindextype SUNDenseMatrix Rows(SUNMatrix A)

Description This function returns the number of rows in the dense SUNMatrix.

F2003 Name This function is callable as FSUNDenseMatrix Rows when using the Fortran 2003 inter-
face module.

SUNDenseMatrix Columns

Prototype sunindextype SUNDenseMatrix Columns(SUNMatrix A)

Description This function returns the number of columns in the dense SUNMatrix.

F2003 Name This function is callable as FSUNDenseMatrix Columns when using the Fortran 2003
interface module.

7.2 The SUNMatrix Dense implementation 137

SUNDenseMatrix LData

Prototype sunindextype SUNDenseMatrix LData(SUNMatrix A)

Description This function returns the length of the data array for the dense SUNMatrix.

F2003 Name This function is callable as FSUNDenseMatrix LData when using the Fortran 2003 inter-
face module.

SUNDenseMatrix Data

Prototype realtype* SUNDenseMatrix Data(SUNMatrix A)

Description This function returns a pointer to the data array for the dense SUNMatrix.

F2003 Name This function is callable as FSUNDenseMatrix Data when using the Fortran 2003 inter-
face module.

SUNDenseMatrix Cols

Prototype realtype** SUNDenseMatrix Cols(SUNMatrix A)

Description This function returns a pointer to the cols array for the dense SUNMatrix.

SUNDenseMatrix Column

Prototype realtype* SUNDenseMatrix Column(SUNMatrix A, sunindextype j)

Description This function returns a pointer to the first entry of the jth column of the dense SUNMatrix.
The resulting pointer should be indexed over the range 0 to M− 1.

F2003 Name This function is callable as FSUNDenseMatrix Column when using the Fortran 2003 in-
terface module.

Notes

• When looping over the components of a dense SUNMatrix A, the most efficient approaches are
to:

– First obtain the component array via A data = SM DATA D(A) or
A data = SUNDenseMatrix Data(A) and then access A data[i] within the loop.

– First obtain the array of column pointers via A cols = SM COLS D(A) or
A cols = SUNDenseMatrix Cols(A), and then access A cols[j][i] within the loop.

– Within a loop over the columns, access the column pointer via
A colj = SUNDenseMatrix Column(A,j) and then to access the entries within that column
using A colj[i] within the loop.

All three of these are more efficient than using SM ELEMENT D(A,i,j) within a double loop.

• Within the SUNMatMatvec Dense routine, internal consistency checks are performed to ensure !

that the matrix is called with consistent nvector implementations. These are currently limited
to: nvector serial, nvector openmp, and nvector pthreads. As additional compatible
vector implementations are added to sundials, these will be included within this compatibility
check.

7.2.3 SUNMatrix Dense Fortran interfaces

The sunmatrix dense module provides a Fortran 2003 module as well as Fortran 77 style inter-
face functions for use from Fortran applications.

138 Description of the SUNMatrix module

FORTRAN 2003 interface module

The fsunmatrix dense mod Fortran module defines interfaces to most sunmatrix dense C func-
tions using the intrinsic iso c binding module which provides a standardized mechanism for interop-
erating with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNDenseMatrix is
interfaced as FSUNDenseMatrix.

The Fortran 2003 sunmatrix dense interface module can be accessed with the use statement,
i.e. use fsunmatrix dense mod, and linking to the library libsundials fsunmatrixdense mod.lib in
addition to the C library. For details on where the library and module file fsunmatrix dense mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fsunmatrixdense mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran interface module, the sunmatrix dense module also includes the
Fortran-callable function FSUNDenseMatInit(code, M, N, ier) to initialize this sunmatrix dense
module for a given sundials solver. Here code is an integer input solver id (1 for cvode, 2 for ida,
3 for kinsol, 4 for arkode); M and N are the corresponding dense matrix construction arguments
(declared to match C type long int); and ier is an error return flag equal to 0 for success and -1
for failure. Both code and ier are declared to match C type int. Additionally, when using arkode
with a non-identity mass matrix, the Fortran-callable function FSUNDenseMassMatInit(M, N, ier)

initializes this sunmatrix dense module for storing the mass matrix.

7.3 The SUNMatrix Band implementation

The banded implementation of the sunmatrix module provided with sundials, sunmatrix band,
defines the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_Band {

sunindextype M;

sunindextype N;

sunindextype mu;

sunindextype ml;

sunindextype s_mu;

sunindextype ldim;

realtype *data;

sunindextype ldata;

realtype **cols;

};

A diagram of the underlying data representation in a banded matrix is shown in Figure 7.1. A more
complete description of the parts of this content field is given below:
M - number of rows

N - number of columns (N = M)

mu - upper half-bandwidth, 0 ≤ mu < N

ml - lower half-bandwidth, 0 ≤ ml < N

s mu - storage upper bandwidth, mu ≤ s mu < N. The LU decomposition routines in the associated
sunlinsol band and sunlinsol lapackband modules write the LU factors into the storage
for A. The upper triangular factor U, however, may have an upper bandwidth as big as min(N-
1,mu+ml) because of partial pivoting. The s mu field holds the upper half-bandwidth allocated
for A.

ldim - leading dimension (ldim ≥ s mu+ml+1)

7.3 The SUNMatrix Band implementation 139

size data

N

mu ml smu

data[0]

data[1]

data[j]

data[j+1]

data[N−1]

data[j][smu−mu]

data[j][smu]

data[j][smu+ml]

mu+ml+1

smu−mu

A(j−mu−1,j)

A(j−mu,j)

A(j,j)

A(j+ml,j)

A

Figure 7.1: Diagram of the storage for the sunmatrix band module. Here A is an N × N band
matrix with upper and lower half-bandwidths mu and ml, respectively. The rows and columns of A are
numbered from 0 to N − 1 and the (i, j)-th element of A is denoted A(i,j). The greyed out areas of
the underlying component storage are used by the associated sunlinsol band linear solver.

data - pointer to a contiguous block of realtype variables. The elements of the banded matrix are
stored columnwise (i.e. columns are stored one on top of the other in memory). Only elements
within the specified half-bandwidths are stored. data is a pointer to ldata contiguous locations
which hold the elements within the band of A.

ldata - length of the data array (= ldim·N)

cols - array of pointers. cols[j] is a pointer to the uppermost element within the band in the
j-th column. This pointer may be treated as an array indexed from s mu−mu (to access the
uppermost element within the band in the j-th column) to s mu+ml (to access the lowest
element within the band in the j-th column). Indices from 0 to s mu−mu−1 give access to extra
storage elements required by the LU decomposition function. Finally, cols[j][i-j+s mu] is
the (i, j)-th element with j−mu ≤ i ≤ j+ml.

The header file to include when using this module is sunmatrix/sunmatrix band.h. The sunma-
trix band module is accessible from all sundials solvers without linking to the
libsundials sunmatrixband module library.

140 Description of the SUNMatrix module

7.3.1 SUNMatrix Band accessor macros

The following macros are provided to access the content of a sunmatrix band matrix. The prefix
SM in the names denotes that these macros are for SUNMatrix implementations, and the suffix B

denotes that these are specific to the banded version.

• SM CONTENT B

This routine gives access to the contents of the banded SUNMatrix.

The assignment A cont = SM CONTENT B(A) sets A cont to be a pointer to the banded SUNMatrix

content structure.

Implementation:

#define SM_CONTENT_B(A) ((SUNMatrixContent_Band)(A->content))

• SM ROWS B, SM COLUMNS B, SM UBAND B, SM LBAND B, SM SUBAND B, SM LDIM B, and SM LDATA B

These macros give individual access to various lengths relevant to the content of a banded
SUNMatrix.

These may be used either to retrieve or to set these values. For example, the assignment A rows

= SM ROWS B(A) sets A rows to be the number of rows in the matrix A. Similarly, the assignment
SM COLUMNS B(A) = A cols sets the number of columns in A to equal A cols.

Implementation:

#define SM_ROWS_B(A) (SM_CONTENT_B(A)->M)

#define SM_COLUMNS_B(A) (SM_CONTENT_B(A)->N)

#define SM_UBAND_B(A) (SM_CONTENT_B(A)->mu)

#define SM_LBAND_B(A) (SM_CONTENT_B(A)->ml)

#define SM_SUBAND_B(A) (SM_CONTENT_B(A)->s_mu)

#define SM_LDIM_B(A) (SM_CONTENT_B(A)->ldim)

#define SM_LDATA_B(A) (SM_CONTENT_B(A)->ldata)

• SM DATA B and SM COLS B

These macros give access to the data and cols pointers for the matrix entries.

The assignment A data = SM DATA B(A) sets A data to be a pointer to the first component of
the data array for the banded SUNMatrix A. The assignment SM DATA B(A) = A data sets the
data array of A to be A data by storing the pointer A data.

Similarly, the assignment A cols = SM COLS B(A) sets A cols to be a pointer to the array of
column pointers for the banded SUNMatrix A. The assignment SM COLS B(A) = A cols sets the
column pointer array of A to be A cols by storing the pointer A cols.

Implementation:

#define SM_DATA_B(A) (SM_CONTENT_B(A)->data)

#define SM_COLS_B(A) (SM_CONTENT_B(A)->cols)

• SM COLUMN B, SM COLUMN ELEMENT B, and SM ELEMENT B

These macros give access to the individual columns and entries of the data array of a banded
SUNMatrix.

The assignments SM ELEMENT B(A,i,j) = a ij and a ij = SM ELEMENT B(A,i,j) reference the
(i,j)-th element of the N× N band matrix A, where 0 ≤ i, j ≤ N− 1. The location (i,j) should
further satisfy j−mu ≤ i ≤ j+ml.

The assignment col j = SM COLUMN B(A,j) sets col j to be a pointer to the diagonal element
of the j-th column of the N × N band matrix A, 0 ≤ j ≤ N − 1. The type of the expression

7.3 The SUNMatrix Band implementation 141

SM COLUMN B(A,j) is realtype *. The pointer returned by the call SM COLUMN B(A,j) can be
treated as an array which is indexed from −mu to ml.

The assignments SM COLUMN ELEMENT B(col j,i,j) = a ij and
a ij = SM COLUMN ELEMENT B(col j,i,j) reference the (i,j)-th entry of the band matrix A

when used in conjunction with SM COLUMN B to reference the j-th column through col j. The
index (i,j) should satisfy j−mu ≤ i ≤ j+ml.

Implementation:

#define SM_COLUMN_B(A,j) (((SM_CONTENT_B(A)->cols)[j])+SM_SUBAND_B(A))

#define SM_COLUMN_ELEMENT_B(col_j,i,j) (col_j[(i)-(j)])

#define SM_ELEMENT_B(A,i,j)

((SM_CONTENT_B(A)->cols)[j][(i)-(j)+SM_SUBAND_B(A)])

7.3.2 SUNMatrix Band functions

The sunmatrix band module defines banded implementations of all matrix operations listed in
Table 7.2. Their names are obtained from those in Table 7.2 by appending the suffix Band (e.g.
SUNMatCopy Band). All the standard matrix operations listed in 7.2 with the suffix Band appended
are callable via the Fortran 2003 interface by prepending an ‘F’ (e.g. FSUNMatCopy Band).

The module sunmatrix band provides the following additional user-callable routines:

SUNBandMatrix

Prototype SUNMatrix SUNBandMatrix(sunindextype N, sunindextype mu, sunindextype ml)

Description This constructor function creates and allocates memory for a banded SUNMatrix. Its
arguments are the matrix size, N, and the upper and lower half-bandwidths of the matrix,
mu and ml. The stored upper bandwidth is set to mu+ml to accommodate subsequent
factorization in the sunlinsol band and sunlinsol lapackband modules.

F2003 Name This function is callable as FSUNBandMatrix when using the Fortran 2003 interface
module.

SUNBandMatrixStorage

Prototype SUNMatrix SUNBandMatrixStorage(sunindextype N, sunindextype mu,

sunindextype ml, sunindextype smu)

Description This constructor function creates and allocates memory for a banded SUNMatrix. Its
arguments are the matrix size, N, the upper and lower half-bandwidths of the matrix,
mu and ml, and the stored upper bandwidth, smu. When creating a band SUNMatrix,
this value should be

• at least min(N-1,mu+ml) if the matrix will be used by the sunlinsol band module;

• exactly equal to mu+ml if the matrix will be used by the sunlinsol lapackband
module;

• at least mu if used in some other manner.

Note: it is strongly recommended that users call the default constructor, SUNBandMatrix,
in all standard use cases. This advanced constructor is used internally within sundials
solvers, and is provided to users who require banded matrices for non-default purposes.

142 Description of the SUNMatrix module

SUNBandMatrix Print

Prototype void SUNBandMatrix Print(SUNMatrix A, FILE* outfile)

Description This function prints the content of a banded SUNMatrix to the output stream specified
by outfile. Note: stdout or stderr may be used as arguments for outfile to print
directly to standard output or standard error, respectively.

SUNBandMatrix Rows

Prototype sunindextype SUNBandMatrix Rows(SUNMatrix A)

Description This function returns the number of rows in the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix Rows when using the Fortran 2003 interface
module.

SUNBandMatrix Columns

Prototype sunindextype SUNBandMatrix Columns(SUNMatrix A)

Description This function returns the number of columns in the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix Columns when using the Fortran 2003 in-
terface module.

SUNBandMatrix LowerBandwidth

Prototype sunindextype SUNBandMatrix LowerBandwidth(SUNMatrix A)

Description This function returns the lower half-bandwidth of the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix LowerBandwidth when using the Fortran
2003 interface module.

SUNBandMatrix UpperBandwidth

Prototype sunindextype SUNBandMatrix UpperBandwidth(SUNMatrix A)

Description This function returns the upper half-bandwidth of the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix UpperBandwidth when using the Fortran
2003 interface module.

SUNBandMatrix StoredUpperBandwidth

Prototype sunindextype SUNBandMatrix StoredUpperBandwidth(SUNMatrix A)

Description This function returns the stored upper half-bandwidth of the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix StoredUpperBandwidth when using the
Fortran 2003 interface module.

SUNBandMatrix LDim

Prototype sunindextype SUNBandMatrix LDim(SUNMatrix A)

Description This function returns the length of the leading dimension of the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix LDim when using the Fortran 2003 interface
module.

7.3 The SUNMatrix Band implementation 143

SUNBandMatrix Data

Prototype realtype* SUNBandMatrix Data(SUNMatrix A)

Description This function returns a pointer to the data array for the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix Data when using the Fortran 2003 interface
module.

SUNBandMatrix Cols

Prototype realtype** SUNBandMatrix Cols(SUNMatrix A)

Description This function returns a pointer to the cols array for the banded SUNMatrix.

SUNBandMatrix Column

Prototype realtype* SUNBandMatrix Column(SUNMatrix A, sunindextype j)

Description This function returns a pointer to the diagonal entry of the j-th column of the banded
SUNMatrix. The resulting pointer should be indexed over the range −mu to ml.

F2003 Name This function is callable as FSUNBandMatrix Column when using the Fortran 2003 inter-
face module.

Notes

• When looping over the components of a banded SUNMatrix A, the most efficient approaches are
to:

– First obtain the component array via A data = SM DATA B(A) or
A data = SUNBandMatrix Data(A) and then access A data[i] within the loop.

– First obtain the array of column pointers via A cols = SM COLS B(A) or
A cols = SUNBandMatrix Cols(A), and then access A cols[j][i] within the loop.

– Within a loop over the columns, access the column pointer via
A colj = SUNBandMatrix Column(A,j) and then to access the entries within that column
using SM COLUMN ELEMENT B(A colj,i,j).

All three of these are more efficient than using SM ELEMENT B(A,i,j) within a double loop.

• Within the SUNMatMatvec Band routine, internal consistency checks are performed to ensure !

that the matrix is called with consistent nvector implementations. These are currently limited
to: nvector serial, nvector openmp, and nvector pthreads. As additional compatible
vector implementations are added to sundials, these will be included within this compatibility
check.

7.3.3 SUNMatrix Band Fortran interfaces

The sunmatrix band module provides a Fortran 2003 module as well as Fortran 77 style interface
functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunmatrix band mod Fortran module defines interfaces to most sunmatrix band C functions
using the intrinsic iso c binding module which provides a standardized mechanism for interoperat-
ing with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNBandMatrix is
interfaced as FSUNBandMatrix.

The Fortran 2003 sunmatrix band interface module can be accessed with the use statement,
i.e. use fsunmatrix band mod, and linking to the library libsundials fsunmatrixband mod.lib in

144 Description of the SUNMatrix module

addition to the C library. For details on where the library and module file fsunmatrix band mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fsunmatrixband mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran interface module, the sunmatrix band module also includes
the Fortran-callable function FSUNBandMatInit(code, N, mu, ml, ier) to initialize this sunma-
trix band module for a given sundials solver. Here code is an integer input solver id (1 for cvode,
2 for ida, 3 for kinsol, 4 for arkode); N, mu, and ml are the corresponding band matrix construction
arguments (declared to match C type long int); and ier is an error return flag equal to 0 for success
and -1 for failure. Both code and ier are declared to match C type int. Additionally, when using
arkode with a non-identity mass matrix, the Fortran-callable function FSUNBandMassMatInit(N,

mu, ml, ier) initializes this sunmatrix band module for storing the mass matrix.

7.4 The SUNMatrix Sparse implementation

The sparse implementation of the sunmatrix module provided with sundials, sunmatrix sparse,
is designed to work with either compressed-sparse-column (CSC) or compressed-sparse-row (CSR)
sparse matrix formats. To this end, it defines the content field of SUNMatrix to be the following
structure:

struct _SUNMatrixContent_Sparse {

sunindextype M;

sunindextype N;

sunindextype NNZ;

sunindextype NP;

realtype *data;

int sparsetype;

sunindextype *indexvals;

sunindextype *indexptrs;

/* CSC indices */

sunindextype **rowvals;

sunindextype **colptrs;

/* CSR indices */

sunindextype **colvals;

sunindextype **rowptrs;

};

A diagram of the underlying data representation for a CSC matrix is shown in Figure 7.2 (the CSR
format is similar). A more complete description of the parts of this content field is given below:
M - number of rows

N - number of columns

NNZ - maximum number of nonzero entries in the matrix (allocated length of data and
indexvals arrays)

NP - number of index pointers (e.g. number of column pointers for CSC matrix). For CSC
matrices NP = N, and for CSR matrices NP = M. This value is set automatically based
the input for sparsetype.

data - pointer to a contiguous block of realtype variables (of length NNZ), containing the
values of the nonzero entries in the matrix

sparsetype - type of the sparse matrix (CSC MAT or CSR MAT)

indexvals - pointer to a contiguous block of int variables (of length NNZ), containing the row indices
(if CSC) or column indices (if CSR) of each nonzero matrix entry held in data

7.4 The SUNMatrix Sparse implementation 145

indexptrs - pointer to a contiguous block of int variables (of length NP+1). For CSC matrices each
entry provides the index of the first column entry into the data and indexvals arrays,
e.g. if indexptr[3]=7, then the first nonzero entry in the fourth column of the matrix
is located in data[7], and is located in row indexvals[7] of the matrix. The last entry
contains the total number of nonzero values in the matrix and hence points one past the
end of the active data in the data and indexvals arrays. For CSR matrices, each entry
provides the index of the first row entry into the data and indexvals arrays.

The following pointers are added to the SlsMat type for user convenience, to provide a more intuitive
interface to the CSC and CSR sparse matrix data structures. They are set automatically when creating
a sparse sunmatrix, based on the sparse matrix storage type.
rowvals - pointer to indexvals when sparsetype is CSC MAT, otherwise set to NULL.

colptrs - pointer to indexptrs when sparsetype is CSC MAT, otherwise set to NULL.

colvals - pointer to indexvals when sparsetype is CSR MAT, otherwise set to NULL.

rowptrs - pointer to indexptrs when sparsetype is CSR MAT, otherwise set to NULL.
For example, the 5× 4 CSC matrix 

0 3 1 0
3 0 0 2
0 7 0 0
1 0 0 9
0 0 0 5


could be stored in this structure as either

M = 5;

N = 4;

NNZ = 8;

NP = N;

data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0};

sparsetype = CSC_MAT;

indexvals = {1, 3, 0, 2, 0, 1, 3, 4};

indexptrs = {0, 2, 4, 5, 8};

or

M = 5;

N = 4;

NNZ = 10;

NP = N;

data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0, *, *};

sparsetype = CSC_MAT;

indexvals = {1, 3, 0, 2, 0, 1, 3, 4, *, *};

indexptrs = {0, 2, 4, 5, 8};

where the first has no unused space, and the second has additional storage (the entries marked with
* may contain any values). Note in both cases that the final value in indexptrs is 8, indicating the
total number of nonzero entries in the matrix.

Similarly, in CSR format, the same matrix could be stored as

M = 5;

N = 4;

NNZ = 8;

NP = N;

data = {3.0, 1.0, 3.0, 2.0, 7.0, 1.0, 9.0, 5.0};

sparsetype = CSR_MAT;

indexvals = {1, 2, 0, 3, 1, 0, 3, 3};

indexptrs = {0, 2, 4, 5, 7, 8};

146 Description of the SUNMatrix module

data

k

nz

0

j column 0

unused
storage

rowvals colptrs

indexvals indexptrs

colvals rowptrs

NULL NULL

A(*rowvals[j],1)

A(*rowvals[1],0)

A(*rowvals[0],0)

A(*rowvals[k],NP−1)

A(*rowvals[nz−1],NP−1)

column NP−1

NNZ

M

sparsetype=CSC_MAT

NNP = N
A

Figure 7.2: Diagram of the storage for a compressed-sparse-column matrix. Here A is an M× N sparse
matrix with storage for up to NNZ nonzero entries (the allocated length of both data and indexvals).
The entries in indexvals may assume values from 0 to M− 1, corresponding to the row index (zero-
based) of each nonzero value. The entries in data contain the values of the nonzero entries, with the
row i, column j entry of A (again, zero-based) denoted as A(i,j). The indexptrs array contains N+1
entries; the first N denote the starting index of each column within the indexvals and data arrays,
while the final entry points one past the final nonzero entry. Here, although NNZ values are allocated,
only nz are actually filled in; the greyed-out portions of data and indexvals indicate extra allocated
space.

7.4 The SUNMatrix Sparse implementation 147

The header file to include when using this module is sunmatrix/sunmatrix sparse.h. The sunma-
trix sparse module is accessible from all sundials solvers without linking to the
libsundials sunmatrixsparse module library.

7.4.1 SUNMatrix Sparse accessor macros

The following macros are provided to access the content of a sunmatrix sparse matrix. The prefix
SM in the names denotes that these macros are for SUNMatrix implementations, and the suffix S

denotes that these are specific to the sparse version.

• SM CONTENT S

This routine gives access to the contents of the sparse SUNMatrix.

The assignment A cont = SM CONTENT S(A) sets A cont to be a pointer to the sparse SUNMatrix
content structure.

Implementation:

#define SM_CONTENT_S(A) ((SUNMatrixContent_Sparse)(A->content))

• SM ROWS S, SM COLUMNS S, SM NNZ S, SM NP S, and SM SPARSETYPE S

These macros give individual access to various lengths relevant to the content of a sparse
SUNMatrix.

These may be used either to retrieve or to set these values. For example, the assignment A rows

= SM ROWS S(A) sets A rows to be the number of rows in the matrix A. Similarly, the assignment
SM COLUMNS S(A) = A cols sets the number of columns in A to equal A cols.

Implementation:

#define SM_ROWS_S(A) (SM_CONTENT_S(A)->M)

#define SM_COLUMNS_S(A) (SM_CONTENT_S(A)->N)

#define SM_NNZ_S(A) (SM_CONTENT_S(A)->NNZ)

#define SM_NP_S(A) (SM_CONTENT_S(A)->NP)

#define SM_SPARSETYPE_S(A) (SM_CONTENT_S(A)->sparsetype)

• SM DATA S, SM INDEXVALS S, and SM INDEXPTRS S

These macros give access to the data and index arrays for the matrix entries.

The assignment A data = SM DATA S(A) sets A data to be a pointer to the first component of
the data array for the sparse SUNMatrix A. The assignment SM DATA S(A) = A data sets the
data array of A to be A data by storing the pointer A data.

Similarly, the assignment A indexvals = SM INDEXVALS S(A) sets A indexvals to be a pointer
to the array of index values (i.e. row indices for a CSC matrix, or column indices for a CSR
matrix) for the sparse SUNMatrix A. The assignment A indexptrs = SM INDEXPTRS S(A) sets
A indexptrs to be a pointer to the array of index pointers (i.e. the starting indices in the
data/indexvals arrays for each row or column in CSR or CSC formats, respectively).

Implementation:

#define SM_DATA_S(A) (SM_CONTENT_S(A)->data)

#define SM_INDEXVALS_S(A) (SM_CONTENT_S(A)->indexvals)

#define SM_INDEXPTRS_S(A) (SM_CONTENT_S(A)->indexptrs)

148 Description of the SUNMatrix module

7.4.2 SUNMatrix Sparse functions

The sunmatrix sparse module defines sparse implementations of all matrix operations listed in Ta-
ble 7.2. Their names are obtained from those in Table 7.2 by appending the suffix Sparse (e.g.
SUNMatCopy Sparse). All the standard matrix operations listed in 7.2 with the suffix Sparse ap-
pended are callable via the Fortran 2003 interface by prepending an ‘F’ (e.g. FSUNMatCopy Sparse).

The module sunmatrix sparse provides the following additional user-callable routines:

SUNSparseMatrix

Prototype SUNMatrix SUNSparseMatrix(sunindextype M, sunindextype N,

sunindextype NNZ, int sparsetype)

Description This function creates and allocates memory for a sparse SUNMatrix. Its arguments
are the number of rows and columns of the matrix, M and N, the maximum number of
nonzeros to be stored in the matrix, NNZ, and a flag sparsetype indicating whether to
use CSR or CSC format (valid arguments are CSR MAT or CSC MAT).

F2003 Name This function is callable as FSUNSparseMatrix when using the Fortran 2003 interface
module.

SUNSparseFromDenseMatrix

Prototype SUNMatrix SUNSparseFromDenseMatrix(SUNMatrix A, realtype droptol,

int sparsetype);

Description This function creates a new sparse matrix from an existing dense matrix by copying all
values with magnitude larger than droptol into the sparse matrix structure.

Requirements:

• A must have type SUNMATRIX DENSE;

• droptol must be non-negative;

• sparsetype must be either CSC MAT or CSR MAT.

The function returns NULL if any requirements are violated, or if the matrix storage
request cannot be satisfied.

F2003 Name This function is callable as FSUNSparseFromDenseMatrix when using the Fortran 2003
interface module.

SUNSparseFromBandMatrix

Prototype SUNMatrix SUNSparseFromBandMatrix(SUNMatrix A, realtype droptol,

int sparsetype);

Description This function creates a new sparse matrix from an existing band matrix by copying all
values with magnitude larger than droptol into the sparse matrix structure.

Requirements:

• A must have type SUNMATRIX BAND;

• droptol must be non-negative;

• sparsetype must be either CSC MAT or CSR MAT.

The function returns NULL if any requirements are violated, or if the matrix storage
request cannot be satisfied.

F2003 Name This function is callable as FSUNSparseFromBandMatrix when using the Fortran 2003
interface module.

7.4 The SUNMatrix Sparse implementation 149

SUNSparseMatrix Realloc

Prototype int SUNSparseMatrix Realloc(SUNMatrix A)

Description This function reallocates internal storage arrays in a sparse matrix so that the resulting
sparse matrix has no wasted space (i.e. the space allocated for nonzero entries equals
the actual number of nonzeros, indexptrs[NP]). Returns 0 on success and 1 on failure
(e.g. if the input matrix is not sparse).

F2003 Name This function is callable as FSUNSparseMatrix Realloc when using the Fortran 2003
interface module.

SUNSparseMatrix Reallocate

Prototype int SUNSparseMatrix Reallocate(SUNMatrix A, sunindextype NNZ)

Description This function reallocates internal storage arrays in a sparse matrix so that the resulting
sparse matrix has storage for a specified number of nonzeros. Returns 0 on success and
1 on failure (e.g. if the input matrix is not sparse or if NNZ is negative).

F2003 Name This function is callable as FSUNSparseMatrix Reallocate when using the Fortran 2003
interface module.

SUNSparseMatrix Print

Prototype void SUNSparseMatrix Print(SUNMatrix A, FILE* outfile)

Description This function prints the content of a sparse SUNMatrix to the output stream specified
by outfile. Note: stdout or stderr may be used as arguments for outfile to print
directly to standard output or standard error, respectively.

SUNSparseMatrix Rows

Prototype sunindextype SUNSparseMatrix Rows(SUNMatrix A)

Description This function returns the number of rows in the sparse SUNMatrix.

F2003 Name This function is callable as FSUNSparseMatrix Rows when using the Fortran 2003 inter-
face module.

SUNSparseMatrix Columns

Prototype sunindextype SUNSparseMatrix Columns(SUNMatrix A)

Description This function returns the number of columns in the sparse SUNMatrix.

F2003 Name This function is callable as FSUNSparseMatrix Columns when using the Fortran 2003
interface module.

SUNSparseMatrix NNZ

Prototype sunindextype SUNSparseMatrix NNZ(SUNMatrix A)

Description This function returns the number of entries allocated for nonzero storage for the sparse
matrix SUNMatrix.

F2003 Name This function is callable as FSUNSparseMatrix NNZ when using the Fortran 2003 inter-
face module.

150 Description of the SUNMatrix module

SUNSparseMatrix NP

Prototype sunindextype SUNSparseMatrix NP(SUNMatrix A)

Description This function returns the number of columns/rows for the sparse SUNMatrix, depending
on whether the matrix uses CSC/CSR format, respectively. The indexptrs array has
NP+1 entries.

F2003 Name This function is callable as FSUNSparseMatrix NP when using the Fortran 2003 interface
module.

SUNSparseMatrix SparseType

Prototype int SUNSparseMatrix SparseType(SUNMatrix A)

Description This function returns the storage type (CSR MAT or CSC MAT) for the sparse SUNMatrix.

F2003 Name This function is callable as FSUNSparseMatrix SparseType when using the Fortran 2003
interface module.

SUNSparseMatrix Data

Prototype realtype* SUNSparseMatrix Data(SUNMatrix A)

Description This function returns a pointer to the data array for the sparse SUNMatrix.

F2003 Name This function is callable as FSUNSparseMatrix Data when using the Fortran 2003 inter-
face module.

SUNSparseMatrix IndexValues

Prototype sunindextype* SUNSparseMatrix IndexValues(SUNMatrix A)

Description This function returns a pointer to index value array for the sparse SUNMatrix: for CSR
format this is the column index for each nonzero entry, for CSC format this is the row
index for each nonzero entry.

F2003 Name This function is callable as FSUNSparseMatrix IndexValues when using the Fortran
2003 interface module.

SUNSparseMatrix IndexPointers

Prototype sunindextype* SUNSparseMatrix IndexPointers(SUNMatrix A)

Description This function returns a pointer to the index pointer array for the sparse SUNMatrix:
for CSR format this is the location of the first entry of each row in the data and
indexvalues arrays, for CSC format this is the location of the first entry of each column.

F2003 Name This function is callable as FSUNSparseMatrix IndexPointers when using the Fortran
2003 interface module.

Within the SUNMatMatvec Sparse routine, internal consistency checks are performed to ensure that!

the matrix is called with consistent nvector implementations. These are currently limited to: nvec-
tor serial, nvector openmp, and nvector pthreads. As additional compatible vector imple-
mentations are added to sundials, these will be included within this compatibility check.

7.4.3 SUNMatrix Sparse Fortran interfaces

The sunmatrix sparse module provides a Fortran 2003 module as well as Fortran 77 style
interface functions for use from Fortran applications.

7.4 The SUNMatrix Sparse implementation 151

FORTRAN 2003 interface module

The fsunmatrix sparse mod Fortran module defines interfaces to most sunmatrix sparse C func-
tions using the intrinsic iso c binding module which provides a standardized mechanism for interop-
erating with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNSparseMatrix is
interfaced as FSUNSparseMatrix.

The Fortran 2003 sunmatrix sparse interface module can be accessed with the use statement,
i.e. use fsunmatrix sparse mod, and linking to the library libsundials fsunmatrixsparse mod.lib
in addition to the C library. For details on where the library and module file fsunmatrix sparse mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fsunmatrixsparse mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran interface module, the sunmatrix sparse module also includes
the Fortran-callable function FSUNSparseMatInit(code, M, N, NNZ, sparsetype, ier) to initial-
ize this sunmatrix sparse module for a given sundials solver. Here code is an integer input for the
solver id (1 for cvode, 2 for ida, 3 for kinsol, 4 for arkode); M, N and NNZ are the corresponding
sparse matrix construction arguments (declared to match C type long int); sparsetype is an integer
flag indicating the sparse storage type (0 for CSC, 1 for CSR); and ier is an error return flag equal to
0 for success and -1 for failure. Each of code, sparsetype and ier are declared so as to match C type
int. Additionally, when using arkode with a non-identity mass matrix, the Fortran-callable function
FSUNSparseMassMatInit(M, N, NNZ, sparsetype, ier) initializes this sunmatrix sparse mod-
ule for storing the mass matrix.

Chapter 8

Description of the
SUNLinearSolver module

For problems that involve the solution of linear systems of equations, the sundials packages oper-
ate using generic linear solver modules defined through the sunlinsol API. This allows sundials
packages to utilize any valid sunlinsol implementation that provides a set of required functions.
These functions can be divided into three categories. The first are the core linear solver functions.
The second group consists of “set” routines to supply the linear solver object with functions provided
by the sundials package, or for modification of solver parameters. The last group consists of “get”
routines for retrieving artifacts (statistics, residual vectors, etc.) from the linear solver. All of these
functions are defined in the header file sundials/sundials linearsolver.h.

The implementations provided with sundials work in coordination with the sundials generic
nvector and sunmatrix modules to provide a set of compatible data structures and solvers for the
solution of linear systems using direct or iterative (matrix-based or matrix-free) methods. Moreover,
advanced users can provide a customized SUNLinearSolver implementation to any sundials package,
particularly in cases where they provide their own nvector and/or sunmatrix modules.

Historically, the sundials packages have been designed to specifically leverage the use of either
direct linear solvers or matrix-free, scaled, preconditioned, iterative linear solvers. However, matrix-
based iterative linear solvers are also supported.

The iterative linear solvers packaged with sundials leverage scaling and preconditioning, as ap-
plicable, to balance error between solution components and to accelerate convergence of the linear
solver. To this end, instead of solving the linear system Ax = b directly, these apply the underlying
iterative algorithm to the transformed system

Ãx̃ = b̃ (8.1)

where

Ã = S1P
−1
1 AP−12 S−12 ,

b̃ = S1P
−1
1 b, (8.2)

x̃ = S2P2x,

and where

• P1 is the left preconditioner,

• P2 is the right preconditioner,

• S1 is a diagonal matrix of scale factors for P−11 b,

• S2 is a diagonal matrix of scale factors for P2x.

154 Description of the SUNLinearSolver module

The scaling matrices are chosen so that S1P
−1
1 b and S2P2x have dimensionless components. If pre-

conditioning is done on the left only (P2 = I), by a matrix P , then S2 must be a scaling for x, while
S1 is a scaling for P−1b, and so may also be taken as a scaling for x. Similarly, if preconditioning is
done on the right only (P1 = I and P2 = P), then S1 must be a scaling for b, while S2 is a scaling for
Px, and may also be taken as a scaling for b.

sundials packages request that iterative linear solvers stop based on the 2-norm of the scaled
preconditioned residual meeting a prescribed tolerance∥∥∥b̃− Ãx̃∥∥∥

2
< tol.

When provided an iterative sunlinsol implementation that does not support the scaling matrices
S1 and S2, sundials’ packages will adjust the value of tol accordingly (see §8.4.2 for more details).
In this case, they instead request that iterative linear solvers stop based on the criteria∥∥P−11 b− P−11 Ax

∥∥
2
< tol.

We note that the corresponding adjustments to tol in this case are non-optimal, in that they cannot
balance error between specific entries of the solution x, only the aggregate error in the overall solution
vector.

We further note that not all of the sundials-provided iterative linear solvers support the full
range of the above options (e.g., separate left/right preconditioning), and that some of the sundials
packages only utilize a subset of these options. Further details on these exceptions are described in
the documentation for each sunlinsol implementation, or for each sundials package.

For users interested in providing their own sunlinsol module, the following section presents
the sunlinsol API and its implementation beginning with the definition of sunlinsol functions
in sections 8.1.1 – 8.1.3. This is followed by the definition of functions supplied to a linear solver
implementation in section 8.1.4. A table of linear solver return codes is given in section 8.1.5. The
SUNLinearSolver type and the generic sunlinsol module are defined in section 8.1.6. The section 8.2
discusses compatibility between the sundials-provided sunlinsol modules and sunmatrix modules.
Section 8.3 lists the requirements for supplying a custom sunlinsol module and discusses some
intended use cases. Users wishing to supply their own sunlinsol module are encouraged to use
the sunlinsol implementations provided with sundials as a template for supplying custom linear
solver modules. The sunlinsol functions required by this sundials package as well as other package
specific details are given in section 8.4. The remaining sections of this chapter present the sunlinsol
modules provided with sundials.

8.1 The SUNLinearSolver API

The sunlinsol API defines several linear solver operations that enable sundials packages to utilize
any sunlinsol implementation that provides the required functions. These functions can be divided
into three categories. The first are the core linear solver functions. The second group of functions con-
sists of set routines to supply the linear solver with functions provided by the sundials time integrators
and to modify solver parameters. The final group consists of get routines for retrieving linear solver
statistics. All of these functions are defined in the header file sundials/sundials linearsolver.h.

8.1.1 SUNLinearSolver core functions

The core linear solver functions consist of four required routines to get the linear solver type
(SUNLinSolGetType), initialize the linear solver object once all solver-specific options have been set
(SUNLinSolInitialize), set up the linear solver object to utilize an updated matrix A
(SUNLinSolSetup), and solve the linear system Ax = b (SUNLinSolSolve). The remaining routine
for destruction of the linear solver object (SUNLinSolFree) is optional.

8.1 The SUNLinearSolver API 155

SUNLinSolGetType

Call type = SUNLinSolGetType(LS);

Description The required function SUNLinSolGetType returns the type identifier for the linear solver
LS. It is used to determine the solver type (direct, iterative, or matrix-iterative) from
the abstract SUNLinearSolver interface.

Arguments LS (SUNLinearSolver) a sunlinsol object.

Return value The return value type (of type int) will be one of the following:

• SUNLINEARSOLVER DIRECT – 0, the sunlinsol module requires a matrix, and com-
putes an ‘exact’ solution to the linear system defined by that matrix.

• SUNLINEARSOLVER ITERATIVE – 1, the sunlinsol module does not require a matrix
(though one may be provided), and computes an inexact solution to the linear
system using a matrix-free iterative algorithm. That is it solves the linear system
defined by the package-supplied ATimes routine (see SUNLinSolSetATimes below),
even if that linear system differs from the one encoded in the matrix object (if one
is provided). As the solver computes the solution only inexactly (or may diverge),
the linear solver should check for solution convergence/accuracy as appropriate.

• SUNLINEARSOLVER MATRIX ITERATIVE – 2, the sunlinsol module requires a ma-
trix, and computes an inexact solution to the linear system defined by that matrix
using an iterative algorithm. That is it solves the linear system defined by the
matrix object even if that linear system differs from that encoded by the package-
supplied ATimes routine. As the solver computes the solution only inexactly (or
may diverge), the linear solver should check for solution convergence/accuracy as
appropriate.

Notes See section 8.3.1 for more information on intended use cases corresponding to the linear
solver type.

SUNLinSolInitialize

Call retval = SUNLinSolInitialize(LS);

Description The required function SUNLinSolInitialize performs linear solver initialization (as-
suming that all solver-specific options have been set).

Arguments LS (SUNLinearSolver) a sunlinsol object.

Return value This should return zero for a successful call, and a negative value for a failure, ideally
returning one of the generic error codes listed in Table 8.1.

SUNLinSolSetup

Call retval = SUNLinSolSetup(LS, A);

Description The required function SUNLinSolSetup performs any linear solver setup needed, based
on an updated system sunmatrix A. This may be called frequently (e.g., with a full
Newton method) or infrequently (for a modified Newton method), based on the type of
integrator and/or nonlinear solver requesting the solves.

Arguments LS (SUNLinearSolver) a sunlinsol object.

A (SUNMatrix) a sunmatrix object.

Return value This should return zero for a successful call, a positive value for a recoverable failure
and a negative value for an unrecoverable failure, ideally returning one of the generic
error codes listed in Table 8.1.

156 Description of the SUNLinearSolver module

SUNLinSolSolve

Call retval = SUNLinSolSolve(LS, A, x, b, tol);

Description The required function SUNLinSolSolve solves a linear system Ax = b.

Arguments LS (SUNLinearSolver) a sunlinsol object.

A (SUNMatrix) a sunmatrix object.

x (N Vector) a nvector object containing the initial guess for the solution of the
linear system, and the solution to the linear system upon return.

b (N Vector) a nvector object containing the linear system right-hand side.

tol (realtype) the desired linear solver tolerance.

Return value This should return zero for a successful call, a positive value for a recoverable failure
and a negative value for an unrecoverable failure, ideally returning one of the generic
error codes listed in Table 8.1.

Notes Direct solvers: can ignore the tol argument.

Matrix-free solvers: (those that identify as SUNLINEARSOLVER ITERATIVE) can ignore
the sunmatrix input A, and should instead rely on the matrix-vector product function
supplied through the routine SUNLinSolSetATimes.

Iterative solvers: (those that identify as SUNLINEARSOLVER ITERATIVE or
SUNLINEARSOLVER MATRIX ITERATIVE) should attempt to solve to the specified toler-
ance tol in a weighted 2-norm. If the solver does not support scaling then it should
just use a 2-norm.

SUNLinSolFree

Call retval = SUNLinSolFree(LS);

Description The optional function SUNLinSolFree frees memory allocated by the linear solver.

Arguments LS (SUNLinearSolver) a sunlinsol object.

Return value This should return zero for a successful call and a negative value for a failure.

8.1.2 SUNLinearSolver set functions

The following set functions are used to supply linear solver modules with functions defined by the
sundials packages and to modify solver parameters. Only the routine for setting the matrix-vector
product routine is required, and that is only for matrix-free linear solver modules. Otherwise, all other
set functions are optional. sunlinsol implementations that do not provide the functionality for any
optional routine should leave the corresponding function pointer NULL instead of supplying a dummy
routine.

SUNLinSolSetATimes

Call retval = SUNLinSolSetATimes(LS, A data, ATimes);

Description The function SUNLinSolSetATimes is required for matrix-free linear solvers; otherwise
it is optional.

This routine provides an ATimesFn function pointer, as well as a void* pointer to a
data structure used by this routine, to a linear solver object. sundials packages will
call this function to set the matrix-vector product function to either a solver-provided
difference-quotient via vector operations or a user-supplied solver-specific routine.

Arguments LS (SUNLinearSolver) a sunlinsol object.

A data (void*) data structure passed to ATimes.

ATimes (ATimesFn) function pointer implementing the matrix-vector product routine.

8.1 The SUNLinearSolver API 157

Return value This routine should return zero for a successful call, and a negative value for a failure,
ideally returning one of the generic error codes listed in Table 8.1.

SUNLinSolSetPreconditioner

Call retval = SUNLinSolSetPreconditioner(LS, Pdata, Pset, Psol);

Description The optional function SUNLinSolSetPreconditioner provides PSetupFn and PSolveFn

function pointers that implement the preconditioner solves P−11 and P−12 from equations
(8.1)-(8.2). This routine will be called by a sundials package, which will provide
translation between the generic Pset and Psol calls and the package- or user-supplied
routines.

Arguments LS (SUNLinearSolver) a sunlinsol object.

Pdata (void*) data structure passed to both Pset and Psol.

Pset (PSetupFn) function pointer implementing the preconditioner setup.

Psol (PSolveFn) function pointer implementing the preconditioner solve.

Return value This routine should return zero for a successful call, and a negative value for a failure,
ideally returning one of the generic error codes listed in Table 8.1.

SUNLinSolSetScalingVectors

Call retval = SUNLinSolSetScalingVectors(LS, s1, s2);

Description The optional function SUNLinSolSetScalingVectors provides left/right scaling vectors
for the linear system solve. Here, s1 and s2 are nvector of positive scale factors con-
taining the diagonal of the matrices S1 and S2 from equations (8.1)-(8.2), respectively.
Neither of these vectors need to be tested for positivity, and a NULL argument for either
indicates that the corresponding scaling matrix is the identity.

Arguments LS (SUNLinearSolver) a sunlinsol object.

s1 (N Vector) diagonal of the matrix S1

s2 (N Vector) diagonal of the matrix S2

Return value This routine should return zero for a successful call, and a negative value for a failure,
ideally returning one of the generic error codes listed in Table 8.1.

8.1.3 SUNLinearSolver get functions

The following get functions allow sundials packages to retrieve results from a linear solve. All routines
are optional.

SUNLinSolNumIters

Call its = SUNLinSolNumIters(LS);

Description The optional function SUNLinSolNumIters should return the number of linear iterations
performed in the last ‘solve’ call.

Arguments LS (SUNLinearSolver) a sunlinsol object.

Return value int containing the number of iterations

SUNLinSolResNorm

Call rnorm = SUNLinSolResNorm(LS);

Description The optional function SUNLinSolResNorm should return the final residual norm from
the last ‘solve’ call.

Arguments LS (SUNLinearSolver) a sunlinsol object.

Return value realtype containing the final residual norm

158 Description of the SUNLinearSolver module

SUNLinSolResid

Call rvec = SUNLinSolResid(LS);

Description If an iterative method computes the preconditioned initial residual and returns with
a successful solve without performing any iterations (i.e., either the initial guess or
the preconditioner is sufficiently accurate), then this optional routine may be called
by the sundials package. This routine should return the nvector containing the
preconditioned initial residual vector.

Arguments LS (SUNLinearSolver) a sunlinsol object.

Return value N Vector containing the final residual vector

Notes Since N Vector is actually a pointer, and the results are not modified, this routine
should not require additional memory allocation. If the sunlinsol object does not
retain a vector for this purpose, then this function pointer should be set to NULL in the
implementation.

SUNLinSolLastFlag

Call lflag = SUNLinSolLastFlag(LS);

Description The optional function SUNLinSolLastFlag should return the last error flag encountered
within the linear solver. This is not called by the sundials packages directly; it allows
the user to investigate linear solver issues after a failed solve.

Arguments LS (SUNLinearSolver) a sunlinsol object.

Return value long int containing the most recent error flag

SUNLinSolSpace

Call retval = SUNLinSolSpace(LS, &lrw, &liw);

Description The optional function SUNLinSolSpace should return the storage requirements for the
linear solver LS.

Arguments LS (SUNLinearSolver) a sunlinsol object.

lrw (long int*) the number of realtype words stored by the linear solver.

liw (long int*) the number of integer words stored by the linear solver.

Return value This should return zero for a successful call, and a negative value for a failure, ideally
returning one of the generic error codes listed in Table 8.1.

Notes This function is advisory only, for use in determining a user’s total space requirements.

8.1.4 Functions provided by sundials packages

To interface with the sunlinsol modules, the sundials packages supply a variety of routines for
evaluating the matrix-vector product, and setting up and applying the preconditioner. These package-
provided routines translate between the user-supplied ODE, DAE, or nonlinear systems and the generic
interfaces to the linear systems of equations that result in their solution. The types for functions
provided to a sunlinsol module are defined in the header file sundials/sundials iterative.h,
and are described below.

ATimesFn

Definition typedef int (*ATimesFn)(void *A data, N Vector v, N Vector z);

Purpose These functions compute the action of a matrix on a vector, performing the operation
z = Av. Memory for z should already be allocted prior to calling this function. The
vector v should be left unchanged.

8.1 The SUNLinearSolver API 159

Arguments A data is a pointer to client data, the same as that supplied to SUNLinSolSetATimes.

v is the input vector to multiply.

z is the output vector computed.

Return value This routine should return 0 if successful and a non-zero value if unsuccessful.

PSetupFn

Definition typedef int (*PSetupFn)(void *P data)

Purpose These functions set up any requisite problem data in preparation for calls to the corre-
sponding PSolveFn.

Arguments P data is a pointer to client data, the same pointer as that supplied to the routine
SUNLinSolSetPreconditioner.

Return value This routine should return 0 if successful and a non-zero value if unsuccessful.

PSolveFn

Definition typedef int (*PSolveFn)(void *P data, N Vector r, N Vector z,

realtype tol, int lr)

Purpose These functions solve the preconditioner equation Pz = r for the vector z. Memory for
z should already be allocted prior to calling this function. The parameter P data is a
pointer to any information about P which the function needs in order to do its job (set
up by the corresponding PSetupFn). The parameter lr is input, and indicates whether
P is to be taken as the left preconditioner or the right preconditioner: lr = 1 for left
and lr = 2 for right. If preconditioning is on one side only, lr can be ignored. If the
preconditioner is iterative, then it should strive to solve the preconditioner equation so
that

‖Pz − r‖wrms < tol

where the weight vector for the WRMS norm may be accessed from the main package
memory structure. The vector r should not be modified by the PSolveFn.

Arguments P data is a pointer to client data, the same pointer as that supplied to the routine
SUNLinSolSetPreconditioner.

r is the right-hand side vector for the preconditioner system.

z is the solution vector for the preconditioner system.

tol is the desired tolerance for an iterative preconditioner.

lr is flag indicating whether the routine should perform left (1) or right (2) pre-
conditioning.

Return value This routine should return 0 if successful and a non-zero value if unsuccessful. On a
failure, a negative return value indicates an unrecoverable condition, while a positive
value indicates a recoverable one, in which the calling routine may reattempt the solution
after updating preconditioner data.

8.1.5 SUNLinearSolver return codes

The functions provided to sunlinsol modules by each sundials package, and functions within the
sundials-provided sunlinsol implementations utilize a common set of return codes, shown in Table
8.1. These adhere to a common pattern: 0 indicates success, a postitive value corresponds to a
recoverable failure, and a negative value indicates a non-recoverable failure. Aside from this pattern,
the actual values of each error code are primarily to provide additional information to the user in case
of a linear solver failure.

160 Description of the SUNLinearSolver module

Table 8.1: Description of the SUNLinearSolver error codes

Name Value Description

SUNLS SUCCESS 0 successful call or converged solve

SUNLS MEM NULL -1 the memory argument to the function is NULL

SUNLS ILL INPUT -2 an illegal input has been provided to the function

SUNLS MEM FAIL -3 failed memory access or allocation

SUNLS ATIMES FAIL UNREC -4 an unrecoverable failure occurred in the ATimes routine

SUNLS PSET FAIL UNREC -5 an unrecoverable failure occurred in the Pset routine

SUNLS PSOLVE FAIL UNREC -6 an unrecoverable failure occurred in the Psolve routine

SUNLS PACKAGE FAIL UNREC -7 an unrecoverable failure occurred in an external linear
solver package

SUNLS GS FAIL -8 a failure occurred during Gram-Schmidt orthogonalization
(sunlinsol spgmr/sunlinsol spfgmr)

SUNLS QRSOL FAIL -9 a singular R matrix was encountered in a QR factorization
(sunlinsol spgmr/sunlinsol spfgmr)

SUNLS RES REDUCED 1 an iterative solver reduced the residual, but did not con-
verge to the desired tolerance

SUNLS CONV FAIL 2 an iterative solver did not converge (and the residual was
not reduced)

SUNLS ATIMES FAIL REC 3 a recoverable failure occurred in the ATimes routine

SUNLS PSET FAIL REC 4 a recoverable failure occurred in the Pset routine

SUNLS PSOLVE FAIL REC 5 a recoverable failure occurred in the Psolve routine

SUNLS PACKAGE FAIL REC 6 a recoverable failure occurred in an external linear solver
package

SUNLS QRFACT FAIL 7 a singular matrix was encountered during a QR factoriza-
tion (sunlinsol spgmr/sunlinsol spfgmr)

SUNLS LUFACT FAIL 8 a singular matrix was encountered during a LU factorization
(sunlinsol dense/sunlinsol band)

8.1.6 The generic SUNLinearSolver module

sundials packages interact with specific sunlinsol implementations through the generic sunlinsol
module on which all other sunlinsol iplementations are built. The SUNLinearSolver type is a
pointer to a structure containing an implementation-dependent content field, and an ops field. The
type SUNLinearSolver is defined as

typedef struct _generic_SUNLinearSolver *SUNLinearSolver;

struct _generic_SUNLinearSolver {

void *content;

struct _generic_SUNLinearSolver_Ops *ops;

};

where the generic SUNLinearSolver Ops structure is a list of pointers to the various actual lin-
ear solver operations provided by a specific implementation. The generic SUNLinearSolver Ops

structure is defined as

struct _generic_SUNLinearSolver_Ops {

SUNLinearSolver_Type (*gettype)(SUNLinearSolver);

8.2 Compatibility of SUNLinearSolver modules 161

int (*setatimes)(SUNLinearSolver, void*, ATimesFn);

int (*setpreconditioner)(SUNLinearSolver, void*,

PSetupFn, PSolveFn);

int (*setscalingvectors)(SUNLinearSolver,

N_Vector, N_Vector);

int (*initialize)(SUNLinearSolver);

int (*setup)(SUNLinearSolver, SUNMatrix);

int (*solve)(SUNLinearSolver, SUNMatrix, N_Vector,

N_Vector, realtype);

int (*numiters)(SUNLinearSolver);

realtype (*resnorm)(SUNLinearSolver);

long int (*lastflag)(SUNLinearSolver);

int (*space)(SUNLinearSolver, long int*, long int*);

N_Vector (*resid)(SUNLinearSolver);

int (*free)(SUNLinearSolver);

};

The generic sunlinsol module defines and implements the linear solver operations defined in
Sections 8.1.1-8.1.3. These routines are in fact only wrappers to the linear solver operations de-
fined by a particular sunlinsol implementation, which are accessed through the ops field of the
SUNLinearSolver structure. To illustrate this point we show below the implementation of a typical
linear solver operation from the generic sunlinsol module, namely SUNLinSolInitialize, which
initializes a sunlinsol object for use after it has been created and configured, and returns a flag
denoting a successful/failed operation:

int SUNLinSolInitialize(SUNLinearSolver S)

{

return ((int) S->ops->initialize(S));

}

8.2 Compatibility of SUNLinearSolver modules

We note that not all sunlinsol types are compatible with all sunmatrix and nvector types provided
with sundials. In Table 8.2 we show the matrix-based linear solvers available as sunlinsol modules,
and the compatible matrix implementations. Recall that Table 4.1 shows the compatibility between
all sunlinsol modules and vector implementations.

Table 8.2: sundials matrix-based linear solvers and matrix implementations that can be used for
each.

Linear Solver
Interface

Dense
Matrix

Banded
Matrix

Sparse
Matrix

User
Supplied

Dense X X
Band X X
LapackDense X X
LapackBand X X
klu X X
superlumt X X
User supplied X X X X

8.3 Implementing a custom SUNLinearSolver module

A particular implementation of the sunlinsol module must:

162 Description of the SUNLinearSolver module

• Specify the content field of the SUNLinearSolver object.

• Define and implement a minimal subset of the linear solver operations. See the section 8.4 to
determine which sunlinsol operations are required for this sundials package.

Note that the names of these routines should be unique to that implementation in order to
permit using more than one sunlinsol module (each with different SUNLinearSolver internal
data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free a
SUNLinearSolver with the new content field and with ops pointing to the new linear solver
operations.

We note that the function pointers for all unsupported optional routines should be set to NULL in
the ops structure. This allows the sundials package that is using the sunlinsol object to know that
the associated functionality is not supported.

Additionally, a sunlinsol implementation may do the following:

• Define and implement additional user-callable “set” routines acting on the SUNLinearSolver,
e.g., for setting various configuration options to tune the linear solver to a particular problem.

• Provide additional user-callable “get” routines acting on the SUNLinearSolver object, e.g., for
returning various solve statistics.

8.3.1 Intended use cases

The sunlinsol (and sunmatrix) APIs are designed to require a minimal set of routines to ease
interfacing with custom or third-party linear solver libraries. External solvers provide similar routines
with the necessary functionality and thus will require minimal effort to wrap within custom sunmatrix
and sunlinsol implementations. Sections 7.1 and 8.4 include a list of the required set of routines that
compatible sunmatrix and sunlinsol implementations must provide. As sundials packages utilize
generic sunlinsol modules allowing for user-supplied SUNLinearSolver implementations, there exists
a wide range of possible linear solver combinations. Some intended use cases for both the sundials-
provided and user-supplied sunlinsol modules are discussd in the following sections.

Direct linear solvers

Direct linear solver modules require a matrix and compute an ‘exact’ solution to the linear system
defined by the matrix. Multiple matrix formats and associated direct linear solvers are supplied with
sundials through different sunmatrix and sunlinsol implementations. sundials packages strive
to amortize the high cost of matrix construction by reusing matrix information for multiple nonlinear
iterations. As a result, each package’s linear solver interface recomputes Jacobian information as
infrequently as possible.

Alternative matrix storage formats and compatible linear solvers that are not currently provided
by, or interfaced with, sundials can leverage this infrastructure with minimal effort. To do so, a user
must implement custom sunmatrix and sunlinsol wrappers for the desired matrix format and/or
linear solver following the APIs described in Chapters 7 and 8. This user-supplied sunlinsol module
must then self-identify as having SUNLINEARSOLVER DIRECT type.

Matrix-free iterative linear solvers

Matrix-free iterative linear solver modules do not require a matrix and compute an inexact solution to
the linear system defined by the package-supplied ATimes routine. sundials supplies multiple scaled,
preconditioned iterative linear solver (spils) sunlinsol modules that support scaling to allow users to
handle non-dimensionalization (as best as possible) within each sundials package and retain variables
and define equations as desired in their applications. For linear solvers that do not support left/right
scaling, the tolerance supplied to the linear solver is adjusted to compensate (see section 8.4.2 for

8.4 KINSOL SUNLinearSolver interface 163

more details); however, this use case may be non-optimal and cannot handle situations where the
magnitudes of different solution components or equations vary dramatically within a single problem.

To utilize alternative linear solvers that are not currently provided by, or interfaced with, sundi-
als a user must implement a custom sunlinsol wrapper for the linear solver following the API
described in Chapter 8. This user-supplied sunlinsol module must then self-identify as having
SUNLINEARSOLVER ITERATIVE type.

Matrix-based iterative linear solvers (reusing A)

Matrix-based iterative linear solver modules require a matrix and compute an inexact solution to
the linear system defined by the matrix. This matrix will be updated infrequently and resued across
multiple solves to amortize cost of matrix construction. As in the direct linear solver case, only
wrappers for the matrix and linear solver in sunmatrix and sunlinsol implementations need to be
created to utilize a new linear solver. This user-supplied sunlinsol module must then self-identify as
having SUNLINEARSOLVER MATRIX ITERATIVE type.

At present, sundials has one example problem that uses this approach for wrapping a structured-
grid matrix, linear solver, and preconditioner from the hypre library that may be used as a template
for other customized implementations (see examples/arkode/CXX parhyp/ark heat2D hypre.cpp).

Matrix-based iterative linear solvers (current A)

For users who wish to utilize a matrix-based iterative linear solver module where the matrix is purely
for preconditioning and the linear system is defined by the package-supplied ATimes routine, we envision
two current possibilities.

The preferred approach is for users to employ one of the sundials spils sunlinsol implementa-
tions (sunlinsol spgmr, sunlinsol spfgmr, sunlinsol spbcgs, sunlinsol sptfqmr, or sunlin-
sol pcg) as the outer solver. The creation and storage of the preconditioner matrix, and interfacing
with the corresponding linear solver, can be handled through a package’s preconditioner ‘setup’ and
‘solve’ functionality (see §4.5.4.2) without creating sunmatrix and sunlinsol implementations. This
usage mode is recommended primarily because the sundials-provided spils modules support the scal-
ing as described above.

A second approach supported by the linear solver APIs is as follows. If the sunlinsol implemen-
tation is matrix-based, self-identifies as having SUNLINEARSOLVER ITERATIVE type, and also provides
a non-NULL SUNLinSolSetATimes routine, then each sundials package will call that routine to attach
its package-specific matrix-vector product routine to the sunlinsol object. The sundials package
will then call the sunlinsol-provided SUNLinSolSetup routine (infrequently) to update matrix infor-
mation, but will provide current matrix-vector products to the sunlinsol implementation through
the package-supplied ATimesFn routine.

8.4 KINSOL SUNLinearSolver interface

Table 8.3 below lists the sunlinsol module linear solver functions used within the kinls interface.
As with the sunmatrix module, we emphasize that the kinsol user does not need to know detailed
usage of linear solver functions by the kinsol code modules in order to use kinsol. The information
is presented as an implementation detail for the interested reader.

The linear solver functions listed below are marked with Xto indicate that they are required, or
with † to indicate that they are only called if they are non-NULL in the sunlinsol implementation
that is being used. Note:

1. SUNLinSolNumIters is only used to accumulate overall iterative linear solver statistics. If it is
not implemented by the sunlinsol module, then kinls will consider all solves as requiring zero
iterations.

2. Although SUNLinSolResNorm is optional, if it is not implemented by the sunlinsol then kinls
will consider all solves a being exact.

164 Description of the SUNLinearSolver module

3. Although kinls does not call SUNLinSolLastFlag directly, this routine is available for users to
query linear solver issues directly.

4. Although kinls does not call SUNLinSolFree directly, this routine should be available for users
to call when cleaning up from a simulation.

Table 8.3: List of linear solver function usage in the kinls interface

D
IR

E
C

T

IT
E

R
A

T
IV

E

M
A

T
R

IX
IT

E
R

A
T

IV
E

SUNLinSolGetType X X X
SUNLinSolSetATimes † X †

SUNLinSolSetPreconditioner † † †
SUNLinSolSetScalingVectors † † †

SUNLinSolInitialize X X X
SUNLinSolSetup X X X
SUNLinSolSolve X X X

1SUNLinSolNumIters † †
2SUNLinSolResNorm † †

3SUNLinSolLastFlag
4SUNLinSolFree

SUNLinSolSpace † † †

Since there are a wide range of potential sunlinsol use cases, the following subsections describe
some details of the kinls interface, in the case that interested users wish to develop custom sunlinsol
modules.

8.4.1 Lagged matrix information

If the sunlinsol object self-identifies as having type SUNLINEARSOLVER DIRECT or
SUNLINEARSOLVER MATRIX ITERATIVE, then the sunlinsol object solves a linear system defined by a
sunmatrix object. As a result, kinsol can perform its optional residual monitoring scheme, described
in §2.

8.4.2 Iterative linear solver tolerance

If the sunlinsol object self-identifies as having type SUNLINEARSOLVER ITERATIVE or
SUNLINEARSOLVER MATRIX ITERATIVE then kinls will adjust the linear solver tolerance delta as de-
scribed in §2 during the course of the nonlinear solve process. However, if the iterative linear solver
does not support scaling matrices (i.e., the SUNLinSolSetScalingVectors routine is NULL), then
kinls will be unable to fully handle ill-conditioning in the nonlinear solve process through the so-
lution and residual scaling operators described in §2. In this case, kinls will attempt to adjust the
linear solver tolerance to account for this lack of functionality. To this end, the following assumptions
are made:

8.5 The SUNLinearSolver Dense implementation 165

1. All residual components have similar magnitude; hence the scaling matrix DF used in computing
the linear residual norm (see §2) should satisfy the assumption

(DF)i,i ≈ DF,mean, for i = 0, . . . , n− 1.

2. The sunlinsol object uses a standard 2-norm to measure convergence.

Since kinsol uses DF as the left-scaling matrix, S1 = DF , then the linear solver convergence
requirement is converted as follows (using the notation from equations (8.1)-(8.2)):∥∥∥b̃− Ãx̃∥∥∥

2
< tol

⇔
∥∥DFP

−1
1 b−DFP

−1
1 Ax

∥∥
2
< tol

⇔
n−1∑
i=0

[
(DF)i,i

(
P−11 (b−Ax)

)
i

]2
< tol2

⇔ D2
F,mean

n−1∑
i=0

[(
P−11 (b−Ax)

)
i

]2
< tol2

⇔
n−1∑
i=0

[(
P−11 (b−Ax)

)
i

]2
<

(
tol

DF,mean

)2

⇔
∥∥P−11 (b−Ax)

∥∥
2
<

tol

DF,mean

Therefore the tolerance scaling factor

DF,mean =
1√
n

(
n−1∑
i=0

(DF)2i,i

)1/2

is computed and the scaled tolerance delta= tol/DF,mean is supplied to the sunlinsol object.

8.5 The SUNLinearSolver Dense implementation

This section describes the sunlinsol implementation for solving dense linear systems. The sunlin-
sol dense module is designed to be used with the corresponding sunmatrix dense matrix type, and
one of the serial or shared-memory nvector implementations (nvector serial, nvector openmp,
or nvector pthreads).

To access the sunlinsol dense module, include the header file sunlinsol/sunlinsol dense.h.
We note that the sunlinsol dense module is accessible from sundials packages without separately
linking to the libsundials sunlinsoldense module library.

8.5.1 SUNLinearSolver Dense description

This solver is constructed to perform the following operations:

• The “setup” call performs a LU factorization with partial (row) pivoting (O(N3) cost), PA =
LU , where P is a permutation matrix, L is a lower triangular matrix with 1’s on the diago-
nal, and U is an upper triangular matrix. This factorization is stored in-place on the input
sunmatrix dense object A, with pivoting information encoding P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored
pivots array and the LU factors held in the sunmatrix dense object (O(N2) cost).

166 Description of the SUNLinearSolver module

8.5.2 SUNLinearSolver Dense functions

The sunlinsol dense module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol Dense

Call LS = SUNLinSol Dense(y, A);

Description The function SUNLinSol Dense creates and allocates memory for a dense
SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

A (SUNMatrix) a sunmatrix dense matrix template for cloning matrices needed
within the solver

Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with con-
sistent nvector and sunmatrix implementations. These are currently limited to
the sunmatrix dense matrix type and the nvector serial, nvector openmp,
and nvector pthreads vector types. As additional compatible matrix and vec-
tor implementations are added to sundials, these will be included within this
compatibility check.

Deprecated Name For backward compatibility, the wrapper function SUNDenseLinearSolver with
idential input and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol Dense when using the Fortran 2003 inter-
face module.

The sunlinsol dense module defines implementations of all “direct” linear solver operations listed
in Sections 8.1.1 – 8.1.3:

• SUNLinSolGetType Dense

• SUNLinSolInitialize Dense – this does nothing, since all consistency checks are performed at
solver creation.

• SUNLinSolSetup Dense – this performs the LU factorization.

• SUNLinSolSolve Dense – this uses the LU factors and pivots array to perform the solve.

• SUNLinSolLastFlag Dense

• SUNLinSolSpace Dense – this only returns information for the storage within the solver object,
i.e. storage for N, last flag, and pivots.

• SUNLinSolFree Dense

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

8.5.3 SUNLinearSolver Dense Fortran interfaces

The sunlinsol dense module provides a Fortran 2003 module as well as Fortran 77 style interface
functions for use from Fortran applications.

8.5 The SUNLinearSolver Dense implementation 167

FORTRAN 2003 interface module

The fsunlinsol dense mod Fortran module defines interfaces to all sunlinsol dense C functions
using the intrinsic iso c binding module which provides a standardized mechanism for interoperating
with C. As noted in the C function descriptions above, the interface functions are named after the
corresponding C function, but with a leading ‘F’. For example, the function SUNLinSol Dense is
interfaced as FSUNLinSol Dense.

The Fortran 2003 sunlinsol dense interface module can be accessed with the use statement,
i.e. use fsunlinsol dense mod, and linking to the library libsundials fsunlinsoldense mod.lib in
addition to the C library. For details on where the library and module file fsunlinsol dense mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fsunlinsoldense mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol dense module also includes
a Fortran-callable function for creating a SUNLinearSolver object.

FSUNDENSELINSOLINIT

Call FSUNDENSELINSOLINIT(code, ier)

Description The function FSUNDENSELINSOLINIT can be called for Fortran programs to create a
dense SUNLinearSolver object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix objects have been
initialized.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol dense module
includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSDENSELINSOLINIT

Call FSUNMASSDENSELINSOLINIT(ier)

Description The function FSUNMASSDENSELINSOLINIT can be called for Fortran programs to create
a dense SUNLinearSolver object for mass matrix linear systems.

Arguments None

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix mass-matrix
objects have been initialized.

8.5.4 SUNLinearSolver Dense content

The sunlinsol dense module defines the content field of a SUNLinearSolver as the following struc-
ture:

struct _SUNLinearSolverContent_Dense {

sunindextype N;

sunindextype *pivots;

long int last_flag;

};

168 Description of the SUNLinearSolver module

These entries of the content field contain the following information:
N - size of the linear system,

pivots - index array for partial pivoting in LU factorization,

last flag - last error return flag from internal function evaluations.

8.6 The SUNLinearSolver Band implementation

This section describes the sunlinsol implementation for solving banded linear systems. The sunlin-
sol band module is designed to be used with the corresponding sunmatrix band matrix type, and
one of the serial or shared-memory nvector implementations (nvector serial, nvector openmp,
or nvector pthreads).

To access the sunlinsol band module, include the header file sunlinsol/sunlinsol band.h.
We note that the sunlinsol band module is accessible from sundials packages without separately
linking to the libsundials sunlinsolband module library.

8.6.1 SUNLinearSolver Band description

This solver is constructed to perform the following operations:

• The “setup” call performs a LU factorization with partial (row) pivoting, PA = LU , where P
is a permutation matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an
upper triangular matrix. This factorization is stored in-place on the input sunmatrix band
object A, with pivoting information encoding P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored
pivots array and the LU factors held in the sunmatrix band object.

• A must be allocated to accommodate the increase in upper bandwidth that occurs during factor-
ization. More precisely, if A is a band matrix with upper bandwidth mu and lower bandwidth ml,
then the upper triangular factor U can have upper bandwidth as big as smu = MIN(N-1,mu+ml).
The lower triangular factor L has lower bandwidth ml.!

8.6.2 SUNLinearSolver Band functions

The sunlinsol band module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol Band

Call LS = SUNLinSol Band(y, A);

Description The function SUNLinSol Band creates and allocates memory for a band
SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

A (SUNMatrix) a sunmatrix band matrix template for cloning matrices needed
within the solver

Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with con-
sistent nvector and sunmatrix implementations. These are currently limited to
the sunmatrix band matrix type and the nvector serial, nvector openmp,
and nvector pthreads vector types. As additional compatible matrix and vec-
tor implementations are added to sundials, these will be included within this
compatibility check.

8.6 The SUNLinearSolver Band implementation 169

Additionally, this routine will verify that the input matrix A is allocated with
appropriate upper bandwidth storage for the LU factorization.

Deprecated Name For backward compatibility, the wrapper function SUNBandLinearSolver with
idential input and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol Band when using the Fortran 2003 interface
module.

The sunlinsol band module defines band implementations of all “direct” linear solver operations
listed in Sections 8.1.1 – 8.1.3:

• SUNLinSolGetType Band

• SUNLinSolInitialize Band – this does nothing, since all consistency checks are performed at
solver creation.

• SUNLinSolSetup Band – this performs the LU factorization.

• SUNLinSolSolve Band – this uses the LU factors and pivots array to perform the solve.

• SUNLinSolLastFlag Band

• SUNLinSolSpace Band – this only returns information for the storage within the solver object,
i.e. storage for N, last flag, and pivots.

• SUNLinSolFree Band

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

8.6.3 SUNLinearSolver Band Fortran interfaces

The sunlinsol band module provides a Fortran 2003 module as well as Fortran 77 style interface
functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunlinsol band mod Fortran module defines interfaces to all sunlinsol band C functions
using the intrinsic iso c binding module which provides a standardized mechanism for interoperat-
ing with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNLinSol Band is
interfaced as FSUNLinSol Band.

The Fortran 2003 sunlinsol band interface module can be accessed with the use statement,
i.e. use fsunlinsol band mod, and linking to the library libsundials fsunlinsolband mod.lib in
addition to the C library. For details on where the library and module file fsunlinsol band mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fsunlinsolband mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol band module also includes
a Fortran-callable function for creating a SUNLinearSolver object.

FSUNBANDLINSOLINIT

Call FSUNBANDLINSOLINIT(code, ier)

Description The function FSUNBANDLINSOLINIT can be called for Fortran programs to create a band
SUNLinearSolver object.

170 Description of the SUNLinearSolver module

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix objects have been
initialized.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol band module
includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSBANDLINSOLINIT

Call FSUNMASSBANDLINSOLINIT(ier)

Description The function FSUNMASSBANDLINSOLINIT can be called for Fortran programs to create a
band SUNLinearSolver object for mass matrix linear systems.

Arguments None

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix mass-matrix
objects have been initialized.

8.6.4 SUNLinearSolver Band content

The sunlinsol band module defines the content field of a SUNLinearSolver as the following struc-
ture:

struct _SUNLinearSolverContent_Band {

sunindextype N;

sunindextype *pivots;

long int last_flag;

};

These entries of the content field contain the following information:
N - size of the linear system,

pivots - index array for partial pivoting in LU factorization,

last flag - last error return flag from internal function evaluations.

8.7 The SUNLinearSolver LapackDense implementation

This section describes the sunlinsol implementation for solving dense linear systems with LA-
PACK. The sunlinsol lapackdense module is designed to be used with the corresponding sunma-
trix dense matrix type, and one of the serial or shared-memory nvector implementations (nvec-
tor serial, nvector openmp, or nvector pthreads).

To access the sunlinsol lapackdense module, include the header file
sunlinsol/sunlinsol lapackdense.h. The installed module library to link to is
libsundials sunlinsollapackdense.lib where .lib is typically .so for shared libraries and .a for
static libraries.

The sunlinsol lapackdense module is a sunlinsol wrapper for the LAPACK dense matrix
factorization and solve routines, *GETRF and *GETRS, where * is either D or S, depending on whether
sundials was configured to have realtype set to double or single, respectively (see Section 4.2).
In order to use the sunlinsol lapackdense module it is assumed that LAPACK has been installed
on the system prior to installation of sundials, and that sundials has been configured appropriately
to link with LAPACK (see Appendix A for details). We note that since there do not exist 128-bit

8.7 The SUNLinearSolver LapackDense implementation 171

floating-point factorization and solve routines in LAPACK, this interface cannot be compiled when
using extended precision for realtype. Similarly, since there do not exist 64-bit integer LAPACK
routines, the sunlinsol lapackdense module also cannot be compiled when using 64-bit integers
for the sunindextype. !

8.7.1 SUNLinearSolver LapackDense description

This solver is constructed to perform the following operations:

• The “setup” call performs a LU factorization with partial (row) pivoting (O(N3) cost), PA =
LU , where P is a permutation matrix, L is a lower triangular matrix with 1’s on the diago-
nal, and U is an upper triangular matrix. This factorization is stored in-place on the input
sunmatrix dense object A, with pivoting information encoding P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored
pivots array and the LU factors held in the sunmatrix dense object (O(N2) cost).

8.7.2 SUNLinearSolver LapackDense functions

The sunlinsol lapackdense module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol LapackDense

Call LS = SUNLinSol LapackDense(y, A);

Description The function SUNLinSol LapackDense creates and allocates memory for a LAPACK-
based, dense SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

A (SUNMatrix) a sunmatrix dense matrix template for cloning matrices needed
within the solver

Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with con-
sistent nvector and sunmatrix implementations. These are currently limited to
the sunmatrix dense matrix type and the nvector serial, nvector openmp,
and nvector pthreads vector types. As additional compatible matrix and vec-
tor implementations are added to sundials, these will be included within this
compatibility check.

Deprecated Name For backward compatibility, the wrapper function SUNLapackDense with idential
input and output arguments is also provided.

The sunlinsol lapackdense module defines dense implementations of all “direct” linear solver
operations listed in Sections 8.1.1 – 8.1.3:

• SUNLinSolGetType LapackDense

• SUNLinSolInitialize LapackDense – this does nothing, since all consistency checks are per-
formed at solver creation.

• SUNLinSolSetup LapackDense – this calls either DGETRF or SGETRF to perform the LU factor-
ization.

• SUNLinSolSolve LapackDense – this calls either DGETRS or SGETRS to use the LU factors and
pivots array to perform the solve.

• SUNLinSolLastFlag LapackDense

172 Description of the SUNLinearSolver module

• SUNLinSolSpace LapackDense – this only returns information for the storage within the solver
object, i.e. storage for N, last flag, and pivots.

• SUNLinSolFree LapackDense

8.7.3 SUNLinearSolver LapackDense Fortran interfaces

For solvers that include a Fortran 77 interface module, the sunlinsol lapackdense module also
includes a Fortran-callable function for creating a SUNLinearSolver object.

FSUNLAPACKDENSEINIT

Call FSUNLAPACKDENSEINIT(code, ier)

Description The function FSUNLAPACKDENSEINIT can be called for Fortran programs to create a
LAPACK-based dense SUNLinearSolver object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix objects have been
initialized.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol lapackdense
module includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver ob-
ject.

FSUNMASSLAPACKDENSEINIT

Call FSUNMASSLAPACKDENSEINIT(ier)

Description The function FSUNMASSLAPACKDENSEINIT can be called for Fortran programs to create
a LAPACK-based, dense SUNLinearSolver object for mass matrix linear systems.

Arguments None

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix mass-matrix
objects have been initialized.

8.7.4 SUNLinearSolver LapackDense content

The sunlinsol lapackdense module defines the content field of a SUNLinearSolver as the following
structure:

struct _SUNLinearSolverContent_Dense {

sunindextype N;

sunindextype *pivots;

long int last_flag;

};

These entries of the content field contain the following information:
N - size of the linear system,

pivots - index array for partial pivoting in LU factorization,

last flag - last error return flag from internal function evaluations.

8.8 The SUNLinearSolver LapackBand implementation 173

8.8 The SUNLinearSolver LapackBand implementation

This section describes the sunlinsol implementation for solving banded linear systems with LA-
PACK. The sunlinsol lapackband module is designed to be used with the corresponding sunma-
trix band matrix type, and one of the serial or shared-memory nvector implementations (nvec-
tor serial, nvector openmp, or nvector pthreads).

To access the sunlinsol lapackband module, include the header file
sunlinsol/sunlinsol lapackband.h. The installed module library to link to is
libsundials sunlinsollapackband.lib where .lib is typically .so for shared libraries and .a for
static libraries.

The sunlinsol lapackband module is a sunlinsol wrapper for the LAPACK band matrix
factorization and solve routines, *GBTRF and *GBTRS, where * is either D or S, depending on whether
sundials was configured to have realtype set to double or single, respectively (see Section 4.2).
In order to use the sunlinsol lapackband module it is assumed that LAPACK has been installed
on the system prior to installation of sundials, and that sundials has been configured appropriately
to link with LAPACK (see Appendix A for details). We note that since there do not exist 128-bit
floating-point factorization and solve routines in LAPACK, this interface cannot be compiled when
using extended precision for realtype. Similarly, since there do not exist 64-bit integer LAPACK
routines, the sunlinsol lapackband module also cannot be compiled when using 64-bit integers for
the sunindextype. !

8.8.1 SUNLinearSolver LapackBand description

This solver is constructed to perform the following operations:

• The “setup” call performs a LU factorization with partial (row) pivoting, PA = LU , where P
is a permutation matrix, L is a lower triangular matrix with 1’s on the diagonal, and U is an
upper triangular matrix. This factorization is stored in-place on the input sunmatrix band
object A, with pivoting information encoding P stored in the pivots array.

• The “solve” call performs pivoting and forward and backward substitution using the stored
pivots array and the LU factors held in the sunmatrix band object.

• A must be allocated to accommodate the increase in upper bandwidth that occurs during factor-
ization. More precisely, if A is a band matrix with upper bandwidth mu and lower bandwidth ml,
then the upper triangular factor U can have upper bandwidth as big as smu = MIN(N-1,mu+ml).
The lower triangular factor L has lower bandwidth ml. !

8.8.2 SUNLinearSolver LapackBand functions

The sunlinsol lapackband module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol LapackBand

Call LS = SUNLinSol LapackBand(y, A);

Description The function SUNLinSol LapackBand creates and allocates memory for a LAPACK-
based, band SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

A (SUNMatrix) a sunmatrix band matrix template for cloning matrices needed
within the solver

Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.

174 Description of the SUNLinearSolver module

Notes This routine will perform consistency checks to ensure that it is called with con-
sistent nvector and sunmatrix implementations. These are currently limited to
the sunmatrix band matrix type and the nvector serial, nvector openmp,
and nvector pthreads vector types. As additional compatible matrix and vec-
tor implementations are added to sundials, these will be included within this
compatibility check.

Additionally, this routine will verify that the input matrix A is allocated with
appropriate upper bandwidth storage for the LU factorization.

Deprecated Name For backward compatibility, the wrapper function SUNLapackBand with idential
input and output arguments is also provided.

The sunlinsol lapackband module defines band implementations of all “direct” linear solver op-
erations listed in Sections 8.1.1 – 8.1.3:

• SUNLinSolGetType LapackBand

• SUNLinSolInitialize LapackBand – this does nothing, since all consistency checks are per-
formed at solver creation.

• SUNLinSolSetup LapackBand – this calls either DGBTRF or SGBTRF to perform the LU factoriza-
tion.

• SUNLinSolSolve LapackBand – this calls either DGBTRS or SGBTRS to use the LU factors and
pivots array to perform the solve.

• SUNLinSolLastFlag LapackBand

• SUNLinSolSpace LapackBand – this only returns information for the storage within the solver
object, i.e. storage for N, last flag, and pivots.

• SUNLinSolFree LapackBand

8.8.3 SUNLinearSolver LapackBand Fortran interfaces

For solvers that include a Fortran 77 interface module, the sunlinsol lapackband module also
includes a Fortran-callable function for creating a SUNLinearSolver object.

FSUNLAPACKDENSEINIT

Call FSUNLAPACKBANDINIT(code, ier)

Description The function FSUNLAPACKBANDINIT can be called for Fortran programs to create a
LAPACK-based band SUNLinearSolver object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix objects have been
initialized.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol lapackband
module includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver ob-
ject.

8.9 The SUNLinearSolver KLU implementation 175

FSUNMASSLAPACKBANDINIT

Call FSUNMASSLAPACKBANDINIT(ier)

Description The function FSUNMASSLAPACKBANDINIT can be called for Fortran programs to create a
LAPACK-based, band SUNLinearSolver object for mass matrix linear systems.

Arguments None

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix mass-matrix
objects have been initialized.

8.8.4 SUNLinearSolver LapackBand content

The sunlinsol lapackband module defines the content field of a SUNLinearSolver as the following
structure:

struct _SUNLinearSolverContent_Band {

sunindextype N;

sunindextype *pivots;

long int last_flag;

};

These entries of the content field contain the following information:
N - size of the linear system,

pivots - index array for partial pivoting in LU factorization,

last flag - last error return flag from internal function evaluations.

8.9 The SUNLinearSolver KLU implementation

This section describes the sunlinsol implementation for solving sparse linear systems with KLU.
The sunlinsol klu module is designed to be used with the corresponding sunmatrix sparse ma-
trix type, and one of the serial or shared-memory nvector implementations (nvector serial,
nvector openmp, or nvector pthreads).

The header file to include when using this module is sunlinsol/sunlinsol klu.h. The installed
module library to link to is libsundials sunlinsolklu.lib where .lib is typically .so for shared
libraries and .a for static libraries.

The sunlinsol klu module is a sunlinsol wrapper for the klu sparse matrix factorization and
solver library written by Tim Davis [1, 9]. In order to use the sunlinsol klu interface to klu, it
is assumed that klu has been installed on the system prior to installation of sundials, and that
sundials has been configured appropriately to link with klu (see Appendix A for details). Addi-
tionally, this wrapper only supports double-precision calculations, and therefore cannot be compiled
if sundials is configured to have realtype set to either extended or single (see Section 4.2). Since
the klu library supports both 32-bit and 64-bit integers, this interface will be compiled for either of
the available sunindextype options. !

8.9.1 SUNLinearSolver KLU description

The klu library has a symbolic factorization routine that computes the permutation of the linear
system matrix to block triangular form and the permutations that will pre-order the diagonal blocks
(the only ones that need to be factored) to reduce fill-in (using AMD, COLAMD, CHOLAMD, natural,
or an ordering given by the user). Of these ordering choices, the default value in the sunlinsol klu
module is the COLAMD ordering.

176 Description of the SUNLinearSolver module

klu breaks the factorization into two separate parts. The first is a symbolic factorization and the
second is a numeric factorization that returns the factored matrix along with final pivot information.
klu also has a refactor routine that can be called instead of the numeric factorization. This routine
will reuse the pivot information. This routine also returns diagnostic information that a user can
examine to determine if numerical stability is being lost and a full numerical factorization should be
done instead of the refactor.

Since the linear systems that arise within the context of sundials calculations will typically
have identical sparsity patterns, the sunlinsol klu module is constructed to perform the following
operations:

• The first time that the “setup” routine is called, it performs the symbolic factorization, followed
by an initial numerical factorization.

• On subsequent calls to the “setup” routine, it calls the appropriate klu “refactor” routine,
followed by estimates of the numerical conditioning using the relevant “rcond”, and if necessary
“condest”, routine(s). If these estimates of the condition number are larger than ε−2/3 (where
ε is the double-precision unit roundoff), then a new factorization is performed.

• The module includes the routine SUNKLUReInit, that can be called by the user to force a full or
partial refactorization at the next “setup” call.

• The “solve” call performs pivoting and forward and backward substitution using the stored klu
data structures. We note that in this solve klu operates on the native data arrays for the
right-hand side and solution vectors, without requiring costly data copies.

8.9.2 SUNLinearSolver KLU functions

The sunlinsol klu module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol KLU

Call LS = SUNLinSol KLU(y, A);

Description The function SUNLinSol KLU creates and allocates memory for a KLU-based
SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

A (SUNMatrix) a sunmatrix sparse matrix template for cloning matrices needed
within the solver

Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with con-
sistent nvector and sunmatrix implementations. These are currently limited to
the sunmatrix sparse matrix type (using either CSR or CSC storage formats)
and the nvector serial, nvector openmp, and nvector pthreads vector
types. As additional compatible matrix and vector implementations are added to
sundials, these will be included within this compatibility check.

Deprecated Name For backward compatibility, the wrapper function SUNKLU with idential input and
output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol KLU when using the Fortran 2003 interface
module.

The sunlinsol klu module defines implementations of all “direct” linear solver operations listed in
Sections 8.1.1 – 8.1.3:

• SUNLinSolGetType KLU

8.9 The SUNLinearSolver KLU implementation 177

• SUNLinSolInitialize KLU – this sets the first factorize flag to 1, forcing both symbolic
and numerical factorizations on the subsequent “setup” call.

• SUNLinSolSetup KLU – this performs either a LU factorization or refactorization of the input
matrix.

• SUNLinSolSolve KLU – this calls the appropriate klu solve routine to utilize the LU factors to
solve the linear system.

• SUNLinSolLastFlag KLU

• SUNLinSolSpace KLU – this only returns information for the storage within the solver interface,
i.e. storage for the integers last flag and first factorize. For additional space requirements,
see the klu documentation.

• SUNLinSolFree KLU

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

The sunlinsol klu module also defines the following additional user-callable functions.

SUNLinSol KLUReInit

Call retval = SUNLinSol KLUReInit(LS, A, nnz, reinit type);

Description The function SUNLinSol KLUReInit reinitializes memory and flags for a new fac-
torization (symbolic and numeric) to be conducted at the next solver setup call.
This routine is useful in the cases where the number of nonzeroes has changed or if
the structure of the linear system has changed which would require a new symbolic
(and numeric factorization).

Arguments LS (SUNLinearSolver) a template for cloning vectors needed within the
solver

A (SUNMatrix) a sunmatrix sparse matrix template for cloning ma-
trices needed within the solver

nnz (sunindextype) the new number of nonzeros in the matrix

reinit type (int) flag governing the level of reinitialization. The allowed values
are:

• SUNKLU REINIT FULL – The Jacobian matrix will be destroyed
and a new one will be allocated based on the nnz value passed
to this call. New symbolic and numeric factorizations will be
completed at the next solver setup.

• SUNKLU REINIT PARTIAL – Only symbolic and numeric factor-
izations will be completed. It is assumed that the Jacobian
size has not exceeded the size of nnz given in the sparse ma-
trix provided to the original constructor routine (or the previous
SUNLinSol KLUReInit call).

Return value The return values from this function are SUNLS MEM NULL (either S or A are NULL),
SUNLS ILL INPUT (A does not have type SUNMATRIX SPARSE or reinit type is in-
valid), SUNLS MEM FAIL (reallocation of the sparse matrix failed) or SUNLS SUCCESS.

Notes This routine will perform consistency checks to ensure that it is called with con-
sistent nvector and sunmatrix implementations. These are currently limited to
the sunmatrix sparse matrix type (using either CSR or CSC storage formats)
and the nvector serial, nvector openmp, and nvector pthreads vector
types. As additional compatible matrix and vector implementations are added to
sundials, these will be included within this compatibility check.

This routine assumes no other changes to solver use are necessary.

178 Description of the SUNLinearSolver module

Deprecated Name For backward compatibility, the wrapper function SUNKLUReInit with idential in-
put and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol KLUReInit when using the Fortran 2003
interface module.

SUNLinSol KLUSetOrdering

Call retval = SUNLinSol KLUSetOrdering(LS, ordering);

Description This function sets the ordering used by klu for reducing fill in the linear solve.

Arguments LS (SUNLinearSolver) the sunlinsol klu object

ordering (int) flag indicating the reordering algorithm to use, the options are:

0 AMD,

1 COLAMD, and

2 the natural ordering.

The default is 1 for COLAMD.

Return value The return values from this function are SUNLS MEM NULL (S is NULL),
SUNLS ILL INPUT (invalid ordering choice), or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNKLUSetOrdering with iden-
tial input and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol KLUSetOrdering when using the Fortran
2003 interface module.

8.9.3 SUNLinearSolver KLU Fortran interfaces

The sunlinsol klu module provides a Fortran 2003 module as well as Fortran 77 style interface
functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunlinsol klu mod Fortran module defines interfaces to all sunlinsol klu C functions using
the intrinsic iso c binding module which provides a standardized mechanism for interoperating with
C. As noted in the C function descriptions above, the interface functions are named after the corre-
sponding C function, but with a leading ‘F’. For example, the function SUNLinSol klu is interfaced
as FSUNLinSol klu.

The Fortran 2003 sunlinsol klu interface module can be accessed with the use statement,
i.e. use fsunlinsol klu mod, and linking to the library libsundials fsunlinsolklu mod.lib in
addition to the C library. For details on where the library and module file fsunlinsol klu mod.mod

are installed see Appendix A.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol klu module also includes a
Fortran-callable function for creating a SUNLinearSolver object.

FSUNKLUINIT

Call FSUNKLUINIT(code, ier)

Description The function FSUNKLUINIT can be called for Fortran programs to create a sunlin-
sol klu object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

8.9 The SUNLinearSolver KLU implementation 179

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix objects have been
initialized.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol klu module in-
cludes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSKLUINIT

Call FSUNMASSKLUINIT(ier)

Description The function FSUNMASSKLUINIT can be called for Fortran programs to create a KLU-
based SUNLinearSolver object for mass matrix linear systems.

Arguments None

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix mass-matrix
objects have been initialized.

The SUNLinSol KLUReInit and SUNLinSol KLUSetOrdering routines also support Fortran inter-
faces for the system and mass matrix solvers:

FSUNKLUREINIT

Call FSUNKLUREINIT(code, nnz, reinit type, ier)

Description The function FSUNKLUREINIT can be called for Fortran programs to re-initialize a sun-
linsol klu object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida,
3 for kinsol, and 4 for arkode).

nnz (sunindextype*) the new number of nonzeros in the matrix

reinit type (int*) flag governing the level of reinitialization. The allowed values are:

1 – The Jacobian matrix will be destroyed and a new one will be allo-
cated based on the nnz value passed to this call. New symbolic and
numeric factorizations will be completed at the next solver setup.

2 – Only symbolic and numeric factorizations will be completed. It is
assumed that the Jacobian size has not exceeded the size of nnz given
in the sparse matrix provided to the original constructor routine (or
the previous SUNLinSol KLUReInit call).

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol KLUReInit for complete further documentation of this routine.

FSUNMASSKLUREINIT

Call FSUNMASSKLUREINIT(nnz, reinit type, ier)

Description The function FSUNMASSKLUREINIT can be called for Fortran programs to re-initialize a
sunlinsol klu object for mass matrix linear systems.

Arguments The arguments are identical to FSUNKLUREINIT above, except that code is not needed
since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol KLUReInit for complete further documentation of this routine.

180 Description of the SUNLinearSolver module

FSUNKLUSETORDERING

Call FSUNKLUSETORDERING(code, ordering, ier)

Description The function FSUNKLUSETORDERING can be called for Fortran programs to change the
reordering algorithm used by klu.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

ordering (int*) flag indication the reordering algorithm to use. Options include:

0 AMD,

1 COLAMD, and

2 the natural ordering.

The default is 1 for COLAMD.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol KLUSetOrdering for complete further documentation of this routine.

FSUNMASSKLUSETORDERING

Call FSUNMASSKLUSETORDERING(ier)

Description The function FSUNMASSKLUSETORDERING can be called for Fortran programs to change
the reordering algorithm used by klu for mass matrix linear systems.

Arguments The arguments are identical to FSUNKLUSETORDERING above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol KLUSetOrdering for complete further documentation of this routine.

8.9.4 SUNLinearSolver KLU content

The sunlinsol klu module defines the content field of a SUNLinearSolver as the following structure:

struct _SUNLinearSolverContent_KLU {

long int last_flag;

int first_factorize;

sun_klu_symbolic *symbolic;

sun_klu_numeric *numeric;

sun_klu_common common;

sunindextype (*klu_solver)(sun_klu_symbolic*, sun_klu_numeric*,

sunindextype, sunindextype,

double*, sun_klu_common*);

};

These entries of the content field contain the following information:
last flag - last error return flag from internal function evaluations,

first factorize - flag indicating whether the factorization has ever been performed,

symbolic - klu storage structure for symbolic factorization components,

numeric - klu storage structure for numeric factorization components,

common - storage structure for common klu solver components,

klu solver – pointer to the appropriate klu solver function (depending on whether it is using
a CSR or CSC sparse matrix).

8.10 The SUNLinearSolver SuperLUMT implementation 181

8.10 The SUNLinearSolver SuperLUMT implementation

This section describes the sunlinsol implementation for solving sparse linear systems with Su-
perLU MT. The superlumt module is designed to be used with the corresponding sunmatrix sparse
matrix type, and one of the serial or shared-memory nvector implementations (nvector serial,
nvector openmp, or nvector pthreads). While these are compatible, it is not recommended to
use a threaded vector module with sunlinsol superlumt unless it is the nvector openmp module
and the superlumt library has also been compiled with OpenMP.

The header file to include when using this module is sunlinsol/sunlinsol superlumt.h. The
installed module library to link to is libsundials sunlinsolsuperlumt.lib where .lib is typically
.so for shared libraries and .a for static libraries.

The sunlinsol superlumt module is a sunlinsol wrapper for the superlumt sparse matrix
factorization and solver library written by X. Sherry Li [2, 21, 11]. The package performs matrix fac-
torization using threads to enhance efficiency in shared memory parallel environments. It should be
noted that threads are only used in the factorization step. In order to use the sunlinsol superlumt
interface to superlumt, it is assumed that superlumt has been installed on the system prior to in-
stallation of sundials, and that sundials has been configured appropriately to link with superlumt
(see Appendix A for details). Additionally, this wrapper only supports single- and double-precision
calculations, and therefore cannot be compiled if sundials is configured to have realtype set to
extended (see Section 4.2). Moreover, since the superlumt library may be installed to support
either 32-bit or 64-bit integers, it is assumed that the superlumt library is installed using the same
integer precision as the sundials sunindextype option. !

8.10.1 SUNLinearSolver SuperLUMT description

The superlumt library has a symbolic factorization routine that computes the permutation of the
linear system matrix to reduce fill-in on subsequent LU factorizations (using COLAMD, minimal
degree ordering on AT ∗ A, minimal degree ordering on AT + A, or natural ordering). Of these
ordering choices, the default value in the sunlinsol superlumt module is the COLAMD ordering.

Since the linear systems that arise within the context of sundials calculations will typically have
identical sparsity patterns, the sunlinsol superlumt module is constructed to perform the following
operations:

• The first time that the “setup” routine is called, it performs the symbolic factorization, followed
by an initial numerical factorization.

• On subsequent calls to the “setup” routine, it skips the symbolic factorization, and only refactors
the input matrix.

• The “solve” call performs pivoting and forward and backward substitution using the stored
superlumt data structures. We note that in this solve superlumt operates on the native data
arrays for the right-hand side and solution vectors, without requiring costly data copies.

8.10.2 SUNLinearSolver SuperLUMT functions

The module sunlinsol superlumt provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol SuperLUMT

Call LS = SUNLinSol SuperLUMT(y, A, num threads);

Description The function SUNLinSol SuperLUMT creates and allocates memory for a
SuperLU MT-based SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

182 Description of the SUNLinearSolver module

A (SUNMatrix) a sunmatrix sparse matrix template for cloning ma-
trices needed within the solver

num threads (int) desired number of threads (OpenMP or Pthreads, depending
on how superlumt was installed) to use during the factorization
steps

Return value This returns a SUNLinearSolver object. If either A or y are incompatible then this
routine will return NULL.

Notes This routine analyzes the input matrix and vector to determine the linear system
size and to assess compatibility with the superlumt library.

This routine will perform consistency checks to ensure that it is called with con-
sistent nvector and sunmatrix implementations. These are currently limited to
the sunmatrix sparse matrix type (using either CSR or CSC storage formats)
and the nvector serial, nvector openmp, and nvector pthreads vector
types. As additional compatible matrix and vector implementations are added to
sundials, these will be included within this compatibility check.

The num threads argument is not checked and is passed directly to superlumt
routines.

Deprecated Name For backward compatibility, the wrapper function SUNSuperLUMT with idential in-
put and output arguments is also provided.

The sunlinsol superlumt module defines implementations of all “direct” linear solver operations
listed in Sections 8.1.1 – 8.1.3:

• SUNLinSolGetType SuperLUMT

• SUNLinSolInitialize SuperLUMT – this sets the first factorize flag to 1 and resets the
internal superlumt statistics variables.

• SUNLinSolSetup SuperLUMT – this performs either a LU factorization or refactorization of the
input matrix.

• SUNLinSolSolve SuperLUMT – this calls the appropriate superlumt solve routine to utilize the
LU factors to solve the linear system.

• SUNLinSolLastFlag SuperLUMT

• SUNLinSolSpace SuperLUMT – this only returns information for the storage within the solver
interface, i.e. storage for the integers last flag and first factorize. For additional space
requirements, see the superlumt documentation.

• SUNLinSolFree SuperLUMT

The sunlinsol superlumt module also defines the following additional user-callable function.

SUNLinSol SuperLUMTSetOrdering

Call retval = SUNLinSol SuperLUMTSetOrdering(LS, ordering);

Description This function sets the ordering used by superlumt for reducing fill in the linear
solve.

Arguments LS (SUNLinearSolver) the sunlinsol superlumt object

ordering (int) a flag indicating the ordering algorithm to use, the options are:

0 natural ordering

1 minimal degree ordering on ATA

2 minimal degree ordering on AT +A

3 COLAMD ordering for unsymmetric matrices

8.10 The SUNLinearSolver SuperLUMT implementation 183

The default is 3 for COLAMD.

Return value The return values from this function are SUNLS MEM NULL (S is NULL),
SUNLS ILL INPUT (invalid ordering choice), or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSuperLUMTSetOrdering with
idential input and output arguments is also provided.

8.10.3 SUNLinearSolver SuperLUMT Fortran interfaces

For solvers that include a Fortran interface module, the sunlinsol superlumt module also includes
a Fortran-callable function for creating a SUNLinearSolver object.

FSUNSUPERLUMTINIT

Call FSUNSUPERLUMTINIT(code, num threads, ier)

Description The function FSUNSUPERLUMTINIT can be called for Fortran programs to create a sun-
linsol klu object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida,
3 for kinsol, and 4 for arkode).

num threads (int*) desired number of threads (OpenMP or Pthreads, depending on
how superlumt was installed) to use during the factorization steps

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix objects have been
initialized.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol superlumt mod-
ule includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSSUPERLUMTINIT

Call FSUNMASSSUPERLUMTINIT(num threads, ier)

Description The function FSUNMASSSUPERLUMTINIT can be called for Fortran programs to create a
SuperLU MT-based SUNLinearSolver object for mass matrix linear systems.

Arguments num threads (int*) desired number of threads (OpenMP or Pthreads, depending on
how superlumt was installed) to use during the factorization steps.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after both the nvector and sunmatrix mass-matrix
objects have been initialized.

The SUNLinSol SuperLUMTSetOrdering routine also supports Fortran interfaces for the system and
mass matrix solvers:

FSUNSUPERLUMTSETORDERING

Call FSUNSUPERLUMTSETORDERING(code, ordering, ier)

Description The function FSUNSUPERLUMTSETORDERING can be called for Fortran programs to update
the ordering algorithm in a sunlinsol superlumt object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

ordering (int*) a flag indicating the ordering algorithm, options are:

0 natural ordering

1 minimal degree ordering on ATA

184 Description of the SUNLinearSolver module

2 minimal degree ordering on AT +A

3 COLAMD ordering for unsymmetric matrices

The default is 3 for COLAMD.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SuperLUMTSetOrdering for complete further documentation of this rou-
tine.

FSUNMASSUPERLUMTSETORDERING

Call FSUNMASSUPERLUMTSETORDERING(ordering, ier)

Description The function FSUNMASSUPERLUMTSETORDERING can be called for Fortran programs to
update the ordering algorithm in a sunlinsol superlumt object for mass matrix linear
systems.

Arguments ordering (int*) a flag indicating the ordering algorithm, options are:

0 natural ordering

1 minimal degree ordering on ATA

2 minimal degree ordering on AT +A

3 COLAMD ordering for unsymmetric matrices

The default is 3 for COLAMD.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SuperLUMTSetOrdering for complete further documentation of this rou-
tine.

8.10.4 SUNLinearSolver SuperLUMT content

The sunlinsol superlumt module defines the content field of a SUNLinearSolver as the following
structure:

struct _SUNLinearSolverContent_SuperLUMT {

long int last_flag;

int first_factorize;

SuperMatrix *A, *AC, *L, *U, *B;

Gstat_t *Gstat;

sunindextype *perm_r, *perm_c;

sunindextype N;

int num_threads;

realtype diag_pivot_thresh;

int ordering;

superlumt_options_t *options;

};

These entries of the content field contain the following information:
last flag - last error return flag from internal function evaluations,

first factorize - flag indicating whether the factorization has ever been performed,

A, AC, L, U, B - SuperMatrix pointers used in solve,

Gstat - GStat t object used in solve,

perm r, perm c - permutation arrays used in solve,

N - size of the linear system,

8.11 The SUNLinearSolver SPGMR implementation 185

num threads - number of OpenMP/Pthreads threads to use,

diag pivot thresh - threshold on diagonal pivoting,

ordering - flag for which reordering algorithm to use,

options - pointer to superlumt options structure.

8.11 The SUNLinearSolver SPGMR implementation

This section describes the sunlinsol implementation of the spgmr (Scaled, Preconditioned, Gen-
eralized Minimum Residual [26]) iterative linear solver. The sunlinsol spgmr module is designed
to be compatible with any nvector implementation that supports a minimal subset of operations
(N VClone, N VDotProd, N VScale, N VLinearSum, N VProd, N VConst, N VDiv, and N VDestroy).
When using Classical Gram-Schmidt, the optional function N VDotProdMulti may be supplied for
increased efficiency.

To access the sunlinsol spgmr module, include the header file sunlinsol/sunlinsol spgmr.h.
We note that the sunlinsol spgmr module is accessible from sundials packages without separately
linking to the libsundials sunlinsolspgmr module library.

8.11.1 SUNLinearSolver SPGMR description

This solver is constructed to perform the following operations:

• During construction, the xcor and vtemp arrays are cloned from a template nvector that is
input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the sundials solver that interfaces with sunlinsol spgmr
to supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the remaining solver data is allocated (V, Hes, givens, and yg)

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
sundials solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

• In the “solve” call, the GMRES iteration is performed. This will include scaling, preconditioning,
and restarts if those options have been supplied.

8.11.2 SUNLinearSolver SPGMR functions

The sunlinsol spgmr module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol SPGMR

Call LS = SUNLinSol SPGMR(y, pretype, maxl);

Description The function SUNLinSol SPGMR creates and allocates memory for a spgmr
SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

pretype (int) flag indicating the desired type of preconditioning, allowed values
are:

• PREC NONE (0)

• PREC LEFT (1)

• PREC RIGHT (2)

186 Description of the SUNLinearSolver module

• PREC BOTH (3)

Any other integer input will result in the default (no preconditioning).

maxl (int) the number of Krylov basis vectors to use. Values ≤ 0 will result
in the default value (5).

Return value This returns a SUNLinearSolver object. If either y is incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with a consis-
tent nvector implementation (i.e. that it supplies the requisite vector operations).
If y is incompatible, then this routine will return NULL.

We note that some sundials solvers are designed to only work with left precondi-
tioning (ida and idas) and others with only right preconditioning (kinsol). While
it is possible to configure a sunlinsol spgmr object to use any of the precondi-
tioning options with these solvers, this use mode is not supported and may result
in inferior performance.

Deprecated Name For backward compatibility, the wrapper function SUNSPGMR with idential input
and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol SPGMR when using the Fortran 2003 inter-
face module.

The sunlinsol spgmr module defines implementations of all “iterative” linear solver operations listed
in Sections 8.1.1 – 8.1.3:

• SUNLinSolGetType SPGMR

• SUNLinSolInitialize SPGMR

• SUNLinSolSetATimes SPGMR

• SUNLinSolSetPreconditioner SPGMR

• SUNLinSolSetScalingVectors SPGMR

• SUNLinSolSetup SPGMR

• SUNLinSolSolve SPGMR

• SUNLinSolNumIters SPGMR

• SUNLinSolResNorm SPGMR

• SUNLinSolResid SPGMR

• SUNLinSolLastFlag SPGMR

• SUNLinSolSpace SPGMR

• SUNLinSolFree SPGMR

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

The sunlinsol spgmr module also defines the following additional user-callable functions.

8.11 The SUNLinearSolver SPGMR implementation 187

SUNLinSol SPGMRSetPrecType

Call retval = SUNLinSol SPGMRSetPrecType(LS, pretype);

Description The function SUNLinSol SPGMRSetPrecType updates the type of preconditioning
to use in the sunlinsol spgmr object.

Arguments LS (SUNLinearSolver) the sunlinsol spgmr object to update

pretype (int) flag indicating the desired type of preconditioning, allowed values
match those discussed in SUNLinSol SPGMR.

Return value This routine will return with one of the error codes SUNLS ILL INPUT (illegal
pretype), SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPGMRSetPrecType with
idential input and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol SPGMRSetPrecType when using the Fortran
2003 interface module.

SUNLinSol SPGMRSetGSType

Call retval = SUNLinSol SPGMRSetGSType(LS, gstype);

Description The function SUNLinSol SPGMRSetPrecType sets the type of Gram-Schmidt or-
thogonalization to use in the sunlinsol spgmr object.

Arguments LS (SUNLinearSolver) the sunlinsol spgmr object to update

gstype (int) flag indicating the desired orthogonalization algorithm; allowed val-
ues are:

• MODIFIED GS (1)

• CLASSICAL GS (2)

Any other integer input will result in a failure, returning error code
SUNLS ILL INPUT.

Return value This routine will return with one of the error codes SUNLS ILL INPUT (illegal
pretype), SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPGMRSetGSType with iden-
tial input and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol SPGMRSetGSType when using the Fortran
2003 interface module.

SUNLinSol SPGMRSetMaxRestarts

Call retval = SUNLinSol SPGMRSetMaxRestarts(LS, maxrs);

Description The function SUNLinSol SPGMRSetMaxRestarts sets the number of GMRES restarts
to allow in the sunlinsol spgmr object.

Arguments LS (SUNLinearSolver) the sunlinsol spgmr object to update

maxrs (int) integer indicating number of restarts to allow. A negative input will
result in the default of 0.

Return value This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or
SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPGMRSetMaxRestarts with
idential input and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol SPGMRSetMaxRestarts when using the
Fortran 2003 interface module.

188 Description of the SUNLinearSolver module

8.11.3 SUNLinearSolver SPGMR Fortran interfaces

The sunlinsol spgmr module provides a Fortran 2003 module as well as Fortran 77 style inter-
face functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunlinsol spgmr mod Fortran module defines interfaces to all sunlinsol spgmr C functions
using the intrinsic iso c binding module which provides a standardized mechanism for interoperating
with C. As noted in the C function descriptions above, the interface functions are named after the
corresponding C function, but with a leading ‘F’. For example, the function SUNLinSol SPGMR is
interfaced as FSUNLinSol SPGMR.

The Fortran 2003 sunlinsol spgmr interface module can be accessed with the use statement,
i.e. use fsunlinsol spgmr mod, and linking to the library libsundials fsunlinsolspgmr mod.lib in
addition to the C library. For details on where the library and module file fsunlinsol spgmr mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fsunlinsolspgmr mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol spgmr module also includes
a Fortran-callable function for creating a SUNLinearSolver object.

FSUNSPGMRINIT

Call FSUNSPGMRINIT(code, pretype, maxl, ier)

Description The function FSUNSPGMRINIT can be called for Fortran programs to create a sunlin-
sol spgmr object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating Krylov subspace size

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPGMR.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol spgmr module
includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSSPGMRINIT

Call FSUNMASSSPGMRINIT(pretype, maxl, ier)

Description The function FSUNMASSSPGMRINIT can be called for Fortran programs to create a sun-
linsol spgmr object for mass matrix linear systems.

Arguments pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating Krylov subspace size

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPGMR.

8.11 The SUNLinearSolver SPGMR implementation 189

The SUNLinSol SPGMRSetPrecType, SUNLinSol SPGMRSetGSType and
SUNLinSol SPGMRSetMaxRestarts routines also support Fortran interfaces for the system and mass
matrix solvers.

FSUNSPGMRSETGSTYPE

Call FSUNSPGMRSETGSTYPE(code, gstype, ier)

Description The function FSUNSPGMRSETGSTYPE can be called for Fortran programs to change the
Gram-Schmidt orthogonaliation algorithm.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

gstype (int*) flag indicating the desired orthogonalization algorithm.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPGMRSetGSType for complete further documentation of this routine.

FSUNMASSSPGMRSETGSTYPE

Call FSUNMASSSPGMRSETGSTYPE(gstype, ier)

Description The function FSUNMASSSPGMRSETGSTYPE can be called for Fortran programs to change
the Gram-Schmidt orthogonaliation algorithm for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPGMRSETGSTYPE above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPGMRSetGSType for complete further documentation of this routine.

FSUNSPGMRSETPRECTYPE

Call FSUNSPGMRSETPRECTYPE(code, pretype, ier)

Description The function FSUNSPGMRSETPRECTYPE can be called for Fortran programs to change the
type of preconditioning to use.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating the type of preconditioning to use.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPGMRSetPrecType for complete further documentation of this routine.

FSUNMASSSPGMRSETPRECTYPE

Call FSUNMASSSPGMRSETPRECTYPE(pretype, ier)

Description The function FSUNMASSSPGMRSETPRECTYPE can be called for Fortran programs to change
the type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPGMRSETPRECTYPE above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPGMRSetPrecType for complete further documentation of this routine.

190 Description of the SUNLinearSolver module

FSUNSPGMRSETMAXRS

Call FSUNSPGMRSETMAXRS(code, maxrs, ier)

Description The function FSUNSPGMRSETMAXRS can be called for Fortran programs to change the
maximum number of restarts allowed for spgmr.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

maxrs (int*) maximum allowed number of restarts.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPGMRSetMaxRestarts for complete further documentation of this rou-
tine.

FSUNMASSSPGMRSETMAXRS

Call FSUNMASSSPGMRSETMAXRS(maxrs, ier)

Description The function FSUNMASSSPGMRSETMAXRS can be called for Fortran programs to change
the maximum number of restarts allowed for spgmr for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPGMRSETMAXRS above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPGMRSetMaxRestarts for complete further documentation of this rou-
tine.

8.11.4 SUNLinearSolver SPGMR content

The sunlinsol spgmr module defines the content field of a SUNLinearSolver as the following struc-
ture:

struct _SUNLinearSolverContent_SPGMR {

int maxl;

int pretype;

int gstype;

int max_restarts;

int numiters;

realtype resnorm;

long int last_flag;

ATimesFn ATimes;

void* ATData;

PSetupFn Psetup;

PSolveFn Psolve;

void* PData;

N_Vector s1;

N_Vector s2;

N_Vector *V;

realtype **Hes;

realtype *givens;

N_Vector xcor;

realtype *yg;

N_Vector vtemp;

};

8.12 The SUNLinearSolver SPFGMR implementation 191

These entries of the content field contain the following information:
maxl - number of GMRES basis vectors to use (default is 5),

pretype - flag for type of preconditioning to employ (default is none),

gstype - flag for type of Gram-Schmidt orthogonalization (default is modified Gram-Schmidt),

max restarts - number of GMRES restarts to allow (default is 0),

numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

V - the array of Krylov basis vectors v1, . . . , vmaxl+1, stored in V[0], . . . , V[maxl]. Each
vi is a vector of type nvector.,

Hes - the (maxl + 1) × maxl Hessenberg matrix. It is stored row-wise so that the (i,j)th
element is given by Hes[i][j].,

givens - a length 2*maxl array which represents the Givens rotation matrices that arise in the
GMRES algorithm. These matrices are F0, F1, . . . , Fj , where

Fi =



1
. . .

1
ci −si
si ci

1
. . .

1


,

are represented in the givens vector as givens[0] = c0, givens[1] = s0, givens[2]
= c1, givens[3] = s1, . . . givens[2j] = cj , givens[2j+1] = sj .,

xcor - a vector which holds the scaled, preconditioned correction to the initial guess,

yg - a length (maxl+1) array of realtype values used to hold “short” vectors (e.g. y and
g),

vtemp - temporary vector storage.

8.12 The SUNLinearSolver SPFGMR implementation

This section describes the sunlinsol implementation of the spfgmr (Scaled, Preconditioned, Flex-
ible, Generalized Minimum Residual [25]) iterative linear solver. The sunlinsol spfgmr module is
designed to be compatible with any nvector implementation that supports a minimal subset of opera-
tions (N VClone, N VDotProd, N VScale, N VLinearSum, N VProd, N VConst, N VDiv, and N VDestroy).
When using Classical Gram-Schmidt, the optional function N VDotProdMulti may be supplied for in-
creased efficiency. Unlike the other Krylov iterative linear solvers supplied with sundials, spfgmr is
specifically designed to work with a changing preconditioner (e.g. from an iterative method).

To access the sunlinsol spfgmr module, include the header file sunlinsol/sunlinsol spfgmr.h.
We note that the sunlinsol spfgmr module is accessible from sundials packages without separately
linking to the libsundials sunlinsolspfgmr module library.

192 Description of the SUNLinearSolver module

8.12.1 SUNLinearSolver SPFGMR description

This solver is constructed to perform the following operations:

• During construction, the xcor and vtemp arrays are cloned from a template nvector that is
input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the sundials solver that interfaces with
sunlinsol spfgmr to supply the ATimes, PSetup, and Psolve function pointers and s1 and s2

scaling vectors.

• In the “initialize” call, the remaining solver data is allocated (V, Hes, givens, and yg)

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
sundials solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

• In the “solve” call, the FGMRES iteration is performed. This will include scaling, precondition-
ing, and restarts if those options have been supplied.

8.12.2 SUNLinearSolver SPFGMR functions

The sunlinsol spfgmr module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol SPFGMR

Call LS = SUNLinSol SPFGMR(y, pretype, maxl);

Description The function SUNLinSol SPFGMR creates and allocates memory for a spfgmr
SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

pretype (int) flag indicating the desired type of preconditioning, allowed values are:

• PREC NONE (0)

• PREC LEFT (1)

• PREC RIGHT (2)

• PREC BOTH (3)

Any other integer input will result in the default (no preconditioning).

maxl (int) the number of Krylov basis vectors to use. Values ≤ 0 will result in the
default value (5).

Return value This returns a SUNLinearSolver object. If either y is incompatible then this routine
will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with a consistent
nvector implementation (i.e. that it supplies the requisite vector operations). If y is
incompatible, then this routine will return NULL.

We note that some sundials solvers are designed to only work with left preconditioning
(ida and idas) and others with only right preconditioning (kinsol). While it is possible
to configure a sunlinsol spfgmr object to use any of the preconditioning options with
these solvers, this use mode is not supported and may result in inferior performance.

F2003 Name This function is callable as FSUNLinSol SPFGMR when using the Fortran 2003 interface
module.

SUNSPFGMR The sunlinsol spfgmr module defines implementations of all “iterative” linear solver
operations listed in Sections 8.1.1 – 8.1.3:

8.12 The SUNLinearSolver SPFGMR implementation 193

• SUNLinSolGetType SPFGMR

• SUNLinSolInitialize SPFGMR

• SUNLinSolSetATimes SPFGMR

• SUNLinSolSetPreconditioner SPFGMR

• SUNLinSolSetScalingVectors SPFGMR

• SUNLinSolSetup SPFGMR

• SUNLinSolSolve SPFGMR

• SUNLinSolNumIters SPFGMR

• SUNLinSolResNorm SPFGMR

• SUNLinSolResid SPFGMR

• SUNLinSolLastFlag SPFGMR

• SUNLinSolSpace SPFGMR

• SUNLinSolFree SPFGMR

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

The sunlinsol spfgmr module also defines the following additional user-callable functions.

SUNLinSol SPFGMRSetPrecType

Call retval = SUNLinSol SPFGMRSetPrecType(LS, pretype);

Description The function SUNLinSol SPFGMRSetPrecType updates the type of preconditioning
to use in the sunlinsol spfgmr object.

Arguments LS (SUNLinearSolver) the sunlinsol spfgmr object to update

pretype (int) flag indicating the desired type of preconditioning, allowed values
match those discussed in SUNLinSol SPFGMR.

Return value This routine will return with one of the error codes SUNLS ILL INPUT (illegal
pretype), SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPFGMRSetPrecType with
idential input and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol SPFGMRSetPrecType when using the For-
tran 2003 interface module.

SUNLinSol SPFGMRSetGSType

Call retval = SUNLinSol SPFGMRSetGSType(LS, gstype);

Description The function SUNLinSol SPFGMRSetPrecType sets the type of Gram-Schmidt or-
thogonalization to use in the sunlinsol spfgmr object.

Arguments LS (SUNLinearSolver) the sunlinsol spfgmr object to update

gstype (int) flag indicating the desired orthogonalization algorithm; allowed val-
ues are:

• MODIFIED GS (1)

• CLASSICAL GS (2)

194 Description of the SUNLinearSolver module

Any other integer input will result in a failure, returning error code
SUNLS ILL INPUT.

Return value This routine will return with one of the error codes SUNLS ILL INPUT (illegal
pretype), SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPFGMRSetGSType with iden-
tial input and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol SPFGMRSetGSType when using the Fortran
2003 interface module.

SUNLinSol SPFGMRSetMaxRestarts

Call retval = SUNLinSol SPFGMRSetMaxRestarts(LS, maxrs);

Description The function SUNLinSol SPFGMRSetMaxRestarts sets the number of GMRES
restarts to allow in the sunlinsol spfgmr object.

Arguments LS (SUNLinearSolver) the sunlinsol spfgmr object to update

maxrs (int) integer indicating number of restarts to allow. A negative input will
result in the default of 0.

Return value This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or
SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPFGMRSetMaxRestarts with
idential input and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol SPFGMRSetMaxRestarts when using the
Fortran 2003 interface module.

8.12.3 SUNLinearSolver SPFGMR Fortran interfaces

The sunlinsol spfgmr module provides a Fortran 2003 module as well as Fortran 77 style
interface functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunlinsol spfgmr mod Fortran module defines interfaces to all sunlinsol spfgmr C func-
tions using the intrinsic iso c binding module which provides a standardized mechanism for interop-
erating with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNLinSol SPFGMR

is interfaced as FSUNLinSol SPFGMR.
The Fortran 2003 sunlinsol spfgmr interface module can be accessed with the use statement,

i.e. use fsunlinsol spfgmr mod, and linking to the library libsundials fsunlinsolspfgmr mod.lib
in addition to the C library. For details on where the library and module file
fsunlinsol spfgmr mod.mod are installed see Appendix A. We note that the module is accessible
from the Fortran 2003 sundials integrators without separately linking to the
libsundials fsunlinsolspfgmr mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol spfgmr module also includes
a Fortran-callable function for creating a SUNLinearSolver object.

FSUNSPFGMRINIT

Call FSUNSPFGMRINIT(code, pretype, maxl, ier)

Description The function FSUNSPFGMRINIT can be called for Fortran programs to create a sunlin-
sol spfgmr object.

8.12 The SUNLinearSolver SPFGMR implementation 195

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating Krylov subspace size

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPFGMR.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol spfgmr module
includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSSPFGMRINIT

Call FSUNMASSSPFGMRINIT(pretype, maxl, ier)

Description The function FSUNMASSSPFGMRINIT can be called for Fortran programs to create a sun-
linsol spfgmr object for mass matrix linear systems.

Arguments pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating Krylov subspace size

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPFGMR.

The SUNLinSol SPFGMRSetPrecType, SUNLinSol SPFGMRSetGSType and
SUNLinSol SPFGMRSetMaxRestarts routines also support Fortran interfaces for the system and mass
matrix solvers.

FSUNSPFGMRSETGSTYPE

Call FSUNSPFGMRSETGSTYPE(code, gstype, ier)

Description The function FSUNSPFGMRSETGSTYPE can be called for Fortran programs to change the
Gram-Schmidt orthogonaliation algorithm.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

gstype (int*) flag indicating the desired orthogonalization algorithm.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPFGMRSetGSType for complete further documentation of this routine.

FSUNMASSSPFGMRSETGSTYPE

Call FSUNMASSSPFGMRSETGSTYPE(gstype, ier)

Description The function FSUNMASSSPFGMRSETGSTYPE can be called for Fortran programs to change
the Gram-Schmidt orthogonaliation algorithm for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPFGMRSETGSTYPE above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPFGMRSetGSType for complete further documentation of this routine.

196 Description of the SUNLinearSolver module

FSUNSPFGMRSETPRECTYPE

Call FSUNSPFGMRSETPRECTYPE(code, pretype, ier)

Description The function FSUNSPFGMRSETPRECTYPE can be called for Fortran programs to change
the type of preconditioning to use.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating the type of preconditioning to use.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPFGMRSetPrecType for complete further documentation of this routine.

FSUNMASSSPFGMRSETPRECTYPE

Call FSUNMASSSPFGMRSETPRECTYPE(pretype, ier)

Description The function FSUNMASSSPFGMRSETPRECTYPE can be called for Fortran programs to change
the type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPFGMRSETPRECTYPE above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPFGMRSetPrecType for complete further documentation of this routine.

FSUNSPFGMRSETMAXRS

Call FSUNSPFGMRSETMAXRS(code, maxrs, ier)

Description The function FSUNSPFGMRSETMAXRS can be called for Fortran programs to change the
maximum number of restarts allowed for spfgmr.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

maxrs (int*) maximum allowed number of restarts.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPFGMRSetMaxRestarts for complete further documentation of this rou-
tine.

FSUNMASSSPFGMRSETMAXRS

Call FSUNMASSSPFGMRSETMAXRS(maxrs, ier)

Description The function FSUNMASSSPFGMRSETMAXRS can be called for Fortran programs to change
the maximum number of restarts allowed for spfgmr for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPFGMRSETMAXRS above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPFGMRSetMaxRestarts for complete further documentation of this rou-
tine.

8.12 The SUNLinearSolver SPFGMR implementation 197

8.12.4 SUNLinearSolver SPFGMR content

The sunlinsol spfgmr module defines the content field of a SUNLinearSolver as the following
structure:

struct _SUNLinearSolverContent_SPFGMR {

int maxl;

int pretype;

int gstype;

int max_restarts;

int numiters;

realtype resnorm;

long int last_flag;

ATimesFn ATimes;

void* ATData;

PSetupFn Psetup;

PSolveFn Psolve;

void* PData;

N_Vector s1;

N_Vector s2;

N_Vector *V;

N_Vector *Z;

realtype **Hes;

realtype *givens;

N_Vector xcor;

realtype *yg;

N_Vector vtemp;

};

These entries of the content field contain the following information:
maxl - number of FGMRES basis vectors to use (default is 5),

pretype - flag for type of preconditioning to employ (default is none),

gstype - flag for type of Gram-Schmidt orthogonalization (default is modified Gram-Schmidt),

max restarts - number of FGMRES restarts to allow (default is 0),

numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

V - the array of Krylov basis vectors v1, . . . , vmaxl+1, stored in V[0], . . . , V[maxl]. Each
vi is a vector of type nvector.,

Z - the array of preconditioned Krylov basis vectors z1, . . . , zmaxl+1, stored in Z[0], . . . ,
Z[maxl]. Each zi is a vector of type nvector.,

Hes - the (maxl + 1) × maxl Hessenberg matrix. It is stored row-wise so that the (i,j)th
element is given by Hes[i][j].,

198 Description of the SUNLinearSolver module

givens - a length 2*maxl array which represents the Givens rotation matrices that arise in the
FGMRES algorithm. These matrices are F0, F1, . . . , Fj , where

Fi =



1
. . .

1
ci −si
si ci

1
. . .

1


,

are represented in the givens vector as givens[0] = c0, givens[1] = s0, givens[2]
= c1, givens[3] = s1, . . . givens[2j] = cj , givens[2j+1] = sj .,

xcor - a vector which holds the scaled, preconditioned correction to the initial guess,

yg - a length (maxl+1) array of realtype values used to hold “short” vectors (e.g. y and
g),

vtemp - temporary vector storage.

8.13 The SUNLinearSolver SPBCGS implementation

This section describes the sunlinsol implementation of the spbcgs (Scaled, Preconditioned, Bi-
Conjugate Gradient, Stabilized [27]) iterative linear solver. The sunlinsol spbcgs module is designed
to be compatible with any nvector implementation that supports a minimal subset of operations
(N VClone, N VDotProd, N VScale, N VLinearSum, N VProd, N VDiv, and N VDestroy). Unlike the
spgmr and spfgmr algorithms, spbcgs requires a fixed amount of memory that does not increase
with the number of allowed iterations.

To access the sunlinsol spbcgs module, include the header file sunlinsol/sunlinsol spbcgs.h.
We note that the sunlinsol spbcgs module is accessible from sundials packages without separately
linking to the libsundials sunlinsolspbcgs module library.

8.13.1 SUNLinearSolver SPBCGS description

This solver is constructed to perform the following operations:

• During construction all nvector solver data is allocated, with vectors cloned from a template
nvector that is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the sundials solver that interfaces with sunlinsol spbcgs
to supply the ATimes, PSetup, and Psolve function pointers and s1 and s2 scaling vectors.

• In the “initialize” call, the solver parameters are checked for validity.

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
sundials solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

• In the “solve” call the spbcgs iteration is performed. This will include scaling and precondi-
tioning if those options have been supplied.

8.13.2 SUNLinearSolver SPBCGS functions

The sunlinsol spbcgs module provides the following user-callable constructor for creating a
SUNLinearSolver object.

8.13 The SUNLinearSolver SPBCGS implementation 199

SUNLinSol SPBCGS

Call LS = SUNLinSol SPBCGS(y, pretype, maxl);

Description The function SUNLinSol SPBCGS creates and allocates memory for a spbcgs
SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

pretype (int) flag indicating the desired type of preconditioning, allowed values
are:

• PREC NONE (0)

• PREC LEFT (1)

• PREC RIGHT (2)

• PREC BOTH (3)

Any other integer input will result in the default (no preconditioning).

maxl (int) the number of linear iterations to allow. Values ≤ 0 will result in
the default value (5).

Return value This returns a SUNLinearSolver object. If either y is incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with a consis-
tent nvector implementation (i.e. that it supplies the requisite vector operations).
If y is incompatible, then this routine will return NULL.

We note that some sundials solvers are designed to only work with left precondi-
tioning (ida and idas) and others with only right preconditioning (kinsol). While
it is possible to configure a sunlinsol spbcgs object to use any of the precondi-
tioning options with these solvers, this use mode is not supported and may result
in inferior performance.

Deprecated Name For backward compatibility, the wrapper function SUNSPBCGS with idential input
and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol SPBCGS when using the Fortran 2003 in-
terface module.

The sunlinsol spbcgs module defines implementations of all “iterative” linear solver operations
listed in Sections 8.1.1 – 8.1.3:

• SUNLinSolGetType SPBCGS

• SUNLinSolInitialize SPBCGS

• SUNLinSolSetATimes SPBCGS

• SUNLinSolSetPreconditioner SPBCGS

• SUNLinSolSetScalingVectors SPBCGS

• SUNLinSolSetup SPBCGS

• SUNLinSolSolve SPBCGS

• SUNLinSolNumIters SPBCGS

• SUNLinSolResNorm SPBCGS

• SUNLinSolResid SPBCGS

• SUNLinSolLastFlag SPBCGS

• SUNLinSolSpace SPBCGS

200 Description of the SUNLinearSolver module

• SUNLinSolFree SPBCGS

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

The sunlinsol spbcgs module also defines the following additional user-callable functions.

SUNLinSol SPBCGSSetPrecType

Call retval = SUNLinSol SPBCGSSetPrecType(LS, pretype);

Description The function SUNLinSol SPBCGSSetPrecType updates the type of preconditioning
to use in the sunlinsol spbcgs object.

Arguments LS (SUNLinearSolver) the sunlinsol spbcgs object to update

pretype (int) flag indicating the desired type of preconditioning, allowed values
match those discussed in SUNLinSol SPBCGS.

Return value This routine will return with one of the error codes SUNLS ILL INPUT (illegal
pretype), SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPBCGSSetPrecType with
idential input and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol SPBCGSSetPrecType when using the For-
tran 2003 interface module.

SUNLinSol SPBCGSSetMaxl

Call retval = SUNLinSol SPBCGSSetMaxl(LS, maxl);

Description The function SUNLinSol SPBCGSSetMaxl updates the number of linear solver iter-
ations to allow.

Arguments LS (SUNLinearSolver) the sunlinsol spbcgs object to update

maxl (int) flag indicating the number of iterations to allow. Values ≤ 0 will result
in the default value (5).

Return value This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or
SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPBCGSSetMaxl with idential
input and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol SPBCGSSetMaxl when using the Fortran
2003 interface module.

8.13.3 SUNLinearSolver SPBCGS Fortran interfaces

The sunlinsol spbcgs module provides a Fortran 2003 module as well as Fortran 77 style
interface functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunlinsol spbcgs mod Fortran module defines interfaces to all sunlinsol spbcgs C func-
tions using the intrinsic iso c binding module which provides a standardized mechanism for interop-
erating with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNLinSol SPBCGS

is interfaced as FSUNLinSol SPBCGS.
The Fortran 2003 sunlinsol spbcgs interface module can be accessed with the use statement,

i.e. use fsunlinsol spbcgs mod, and linking to the library libsundials fsunlinsolspbcgs mod.lib
in addition to the C library. For details on where the library and module file
fsunlinsol spbcgs mod.mod are installed see Appendix A. We note that the module is accessible

8.13 The SUNLinearSolver SPBCGS implementation 201

from the Fortran 2003 sundials integrators without separately linking to the
libsundials fsunlinsolspbcgs mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol spbcgs module also includes
a Fortran-callable function for creating a SUNLinearSolver object.

FSUNSPBCGSINIT

Call FSUNSPBCGSINIT(code, pretype, maxl, ier)

Description The function FSUNSPBCGSINIT can be called for Fortran programs to create a sunlin-
sol spbcgs object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating number of iterations to allow

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPBCGS.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol spbcgs module
includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSSPBCGSINIT

Call FSUNMASSSPBCGSINIT(pretype, maxl, ier)

Description The function FSUNMASSSPBCGSINIT can be called for Fortran programs to create a sun-
linsol spbcgs object for mass matrix linear systems.

Arguments pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating number of iterations to allow

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPBCGS.

The SUNLinSol SPBCGSSetPrecType and SUNLinSol SPBCGSSetMaxl routines also support Fortran
interfaces for the system and mass matrix solvers.

FSUNSPBCGSSETPRECTYPE

Call FSUNSPBCGSSETPRECTYPE(code, pretype, ier)

Description The function FSUNSPBCGSSETPRECTYPE can be called for Fortran programs to change
the type of preconditioning to use.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating the type of preconditioning to use.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPBCGSSetPrecType for complete further documentation of this routine.

202 Description of the SUNLinearSolver module

FSUNMASSSPBCGSSETPRECTYPE

Call FSUNMASSSPBCGSSETPRECTYPE(pretype, ier)

Description The function FSUNMASSSPBCGSSETPRECTYPE can be called for Fortran programs to change
the type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPBCGSSETPRECTYPE above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPBCGSSetPrecType for complete further documentation of this routine.

FSUNSPBCGSSETMAXL

Call FSUNSPBCGSSETMAXL(code, maxl, ier)

Description The function FSUNSPBCGSSETMAXL can be called for Fortran programs to change the
maximum number of iterations to allow.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

maxl (int*) the number of iterations to allow.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPBCGSSetMaxl for complete further documentation of this routine.

FSUNMASSSPBCGSSETMAXL

Call FSUNMASSSPBCGSSETMAXL(maxl, ier)

Description The function FSUNMASSSPBCGSSETMAXL can be called for Fortran programs to change
the type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPBCGSSETMAXL above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPBCGSSetMaxl for complete further documentation of this routine.

8.13.4 SUNLinearSolver SPBCGS content

The sunlinsol spbcgs module defines the content field of a SUNLinearSolver as the following
structure:

struct _SUNLinearSolverContent_SPBCGS {

int maxl;

int pretype;

int numiters;

realtype resnorm;

long int last_flag;

ATimesFn ATimes;

void* ATData;

PSetupFn Psetup;

PSolveFn Psolve;

void* PData;

N_Vector s1;

N_Vector s2;

8.14 The SUNLinearSolver SPTFQMR implementation 203

N_Vector r;

N_Vector r_star;

N_Vector p;

N_Vector q;

N_Vector u;

N_Vector Ap;

N_Vector vtemp;

};

These entries of the content field contain the following information:
maxl - number of spbcgs iterations to allow (default is 5),

pretype - flag for type of preconditioning to employ (default is none),

numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

r - a nvector which holds the current scaled, preconditioned linear system residual,

r star - a nvector which holds the initial scaled, preconditioned linear system residual,

p, q, u, Ap, vtemp - nvectors used for workspace by the spbcgs algorithm.

8.14 The SUNLinearSolver SPTFQMR implementation

This section describes the sunlinsol implementation of the sptfqmr (Scaled, Preconditioned,
Transpose-Free Quasi-Minimum Residual [15]) iterative linear solver. The sunlinsol sptfqmr mod-
ule is designed to be compatible with any nvector implementation that supports a minimal sub-
set of operations (N VClone, N VDotProd, N VScale, N VLinearSum, N VProd, N VConst, N VDiv, and
N VDestroy). Unlike the spgmr and spfgmr algorithms, sptfqmr requires a fixed amount of memory
that does not increase with the number of allowed iterations.

To access the sunlinsol sptfqmr module, include the header file
sunlinsol/sunlinsol sptfqmr.h. We note that the sunlinsol sptfqmr module is accessible from
sundials packages without separately linking to the libsundials sunlinsolsptfqmr module library.

8.14.1 SUNLinearSolver SPTFQMR description

This solver is constructed to perform the following operations:

• During construction all nvector solver data is allocated, with vectors cloned from a template
nvector that is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

• Additional “set” routines are called by the sundials solver that interfaces with
sunlinsol sptfqmr to supply the ATimes, PSetup, and Psolve function pointers and s1 and
s2 scaling vectors.

• In the “initialize” call, the solver parameters are checked for validity.

204 Description of the SUNLinearSolver module

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
sundials solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

• In the “solve” call the TFQMR iteration is performed. This will include scaling and precondi-
tioning if those options have been supplied.

8.14.2 SUNLinearSolver SPTFQMR functions

The sunlinsol sptfqmr module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol SPTFQMR

Call LS = SUNLinSol SPTFQMR(y, pretype, maxl);

Description The function SUNLinSol SPTFQMR creates and allocates memory for a sptfqmr
SUNLinearSolver object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

pretype (int) flag indicating the desired type of preconditioning, allowed values
are:

• PREC NONE (0)

• PREC LEFT (1)

• PREC RIGHT (2)

• PREC BOTH (3)

Any other integer input will result in the default (no preconditioning).

maxl (int) the number of linear iterations to allow. Values ≤ 0 will result in
the default value (5).

Return value This returns a SUNLinearSolver object. If either y is incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with a consis-
tent nvector implementation (i.e. that it supplies the requisite vector operations).
If y is incompatible, then this routine will return NULL.

We note that some sundials solvers are designed to only work with left precondi-
tioning (ida and idas) and others with only right preconditioning (kinsol). While
it is possible to configure a sunlinsol sptfqmr object to use any of the precondi-
tioning options with these solvers, this use mode is not supported and may result
in inferior performance.

Deprecated Name For backward compatibility, the wrapper function SUNSPTFQMR with idential input
and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol SPTFQMR when using the Fortran 2003
interface module.

The sunlinsol sptfqmr module defines implementations of all “iterative” linear solver operations
listed in Sections 8.1.1 – 8.1.3:

• SUNLinSolGetType SPTFQMR

• SUNLinSolInitialize SPTFQMR

• SUNLinSolSetATimes SPTFQMR

• SUNLinSolSetPreconditioner SPTFQMR

• SUNLinSolSetScalingVectors SPTFQMR

8.14 The SUNLinearSolver SPTFQMR implementation 205

• SUNLinSolSetup SPTFQMR

• SUNLinSolSolve SPTFQMR

• SUNLinSolNumIters SPTFQMR

• SUNLinSolResNorm SPTFQMR

• SUNLinSolResid SPTFQMR

• SUNLinSolLastFlag SPTFQMR

• SUNLinSolSpace SPTFQMR

• SUNLinSolFree SPTFQMR

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

The sunlinsol sptfqmr module also defines the following additional user-callable functions.

SUNLinSol SPTFQMRSetPrecType

Call retval = SUNLinSol SPTFQMRSetPrecType(LS, pretype);

Description The function SUNLinSol SPTFQMRSetPrecType updates the type of preconditioning
to use in the sunlinsol sptfqmr object.

Arguments LS (SUNLinearSolver) the sunlinsol sptfqmr object to update

pretype (int) flag indicating the desired type of preconditioning, allowed values
match those discussed in SUNLinSol SPTFQMR.

Return value This routine will return with one of the error codes SUNLS ILL INPUT (illegal
pretype), SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNSPTFQMRSetPrecType with
idential input and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol SPTFQMRSetPrecType when using the For-
tran 2003 interface module.

SUNLinSol SPTFQMRSetMaxl

Call retval = SUNLinSol SPTFQMRSetMaxl(LS, maxl);

Description The function SUNLinSol SPTFQMRSetMaxl updates the number of linear solver iterations
to allow.

Arguments LS (SUNLinearSolver) the sunlinsol sptfqmr object to update

maxl (int) flag indicating the number of iterations to allow; values ≤ 0 will result in
the default value (5)

Return value This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or
SUNLS SUCCESS.

F2003 Name This function is callable as FSUNLinSol SPTFQMRSetMaxl when using the Fortran 2003
interface module.

SUNSPTFQMRSetMaxl

8.14.3 SUNLinearSolver SPTFQMR Fortran interfaces

The sunlinsol spfgmr module provides a Fortran 2003 module as well as Fortran 77 style
interface functions for use from Fortran applications.

206 Description of the SUNLinearSolver module

FORTRAN 2003 interface module

The fsunlinsol sptfqmr mod Fortran module defines interfaces to all sunlinsol spfgmr C func-
tions using the intrinsic iso c binding module which provides a standardized mechanism for interop-
erating with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNLinSol SPTFQMR

is interfaced as FSUNLinSol SPTFQMR.
The Fortran 2003 sunlinsol spfgmr interface module can be accessed with the use statement,

i.e. use fsunlinsol sptfqmr mod, and linking to the library libsundials fsunlinsolsptfqmr mod.lib
in addition to the C library. For details on where the library and module file
fsunlinsol sptfqmr mod.mod are installed see Appendix A. We note that the module is accessible
from the Fortran 2003 sundials integrators without separately linking to the
libsundials fsunlinsolsptfqmr mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol sptfqmr module also in-
cludes a Fortran-callable function for creating a SUNLinearSolver object.

FSUNSPTFQMRINIT

Call FSUNSPTFQMRINIT(code, pretype, maxl, ier)

Description The function FSUNSPTFQMRINIT can be called for Fortran programs to create a sunlin-
sol sptfqmr object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating number of iterations to allow

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPTFQMR.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol sptfqmr module
includes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSSPTFQMRINIT

Call FSUNMASSSPTFQMRINIT(pretype, maxl, ier)

Description The function FSUNMASSSPTFQMRINIT can be called for Fortran programs to create a
sunlinsol sptfqmr object for mass matrix linear systems.

Arguments pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating number of iterations to allow

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function
SUNLinSol SPTFQMR.

The SUNLinSol SPTFQMRSetPrecType and SUNLinSol SPTFQMRSetMaxl routines also support Fortran
interfaces for the system and mass matrix solvers.

8.14 The SUNLinearSolver SPTFQMR implementation 207

FSUNSPTFQMRSETPRECTYPE

Call FSUNSPTFQMRSETPRECTYPE(code, pretype, ier)

Description The function FSUNSPTFQMRSETPRECTYPE can be called for Fortran programs to change
the type of preconditioning to use.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating the type of preconditioning to use.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPTFQMRSetPrecType for complete further documentation of this rou-
tine.

FSUNMASSSPTFQMRSETPRECTYPE

Call FSUNMASSSPTFQMRSETPRECTYPE(pretype, ier)

Description The function FSUNMASSSPTFQMRSETPRECTYPE can be called for Fortran programs to
change the type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPTFQMRSETPRECTYPE above, except that code is
not needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPTFQMRSetPrecType for complete further documentation of this rou-
tine.

FSUNSPTFQMRSETMAXL

Call FSUNSPTFQMRSETMAXL(code, maxl, ier)

Description The function FSUNSPTFQMRSETMAXL can be called for Fortran programs to change the
maximum number of iterations to allow.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

maxl (int*) the number of iterations to allow.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPTFQMRSetMaxl for complete further documentation of this routine.

FSUNMASSSPTFQMRSETMAXL

Call FSUNMASSSPTFQMRSETMAXL(maxl, ier)

Description The function FSUNMASSSPTFQMRSETMAXL can be called for Fortran programs to change
the type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNSPTFQMRSETMAXL above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol SPTFQMRSetMaxl for complete further documentation of this routine.

208 Description of the SUNLinearSolver module

8.14.4 SUNLinearSolver SPTFQMR content

The sunlinsol sptfqmr module defines the content field of a SUNLinearSolver as the following
structure:

struct _SUNLinearSolverContent_SPTFQMR {

int maxl;

int pretype;

int numiters;

realtype resnorm;

long int last_flag;

ATimesFn ATimes;

void* ATData;

PSetupFn Psetup;

PSolveFn Psolve;

void* PData;

N_Vector s1;

N_Vector s2;

N_Vector r_star;

N_Vector q;

N_Vector d;

N_Vector v;

N_Vector p;

N_Vector *r;

N_Vector u;

N_Vector vtemp1;

N_Vector vtemp2;

N_Vector vtemp3;

};

These entries of the content field contain the following information:

maxl - number of TFQMR iterations to allow (default is 5),

pretype - flag for type of preconditioning to employ (default is none),

numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s1, s2 - vector pointers for supplied scaling matrices (default is NULL),

r star - a nvector which holds the initial scaled, preconditioned linear system residual,

q, d, v, p, u - nvectors used for workspace by the SPTFQMR algorithm,

r - array of two nvectors used for workspace within the SPTFQMR algorithm,

vtemp1, vtemp2, vtemp3 - temporary vector storage.

8.15 The SUNLinearSolver PCG implementation 209

8.15 The SUNLinearSolver PCG implementation

This section describes the sunlinsol implementaiton of the pcg (Preconditioned Conjugate Gradient
[16]) iterative linear solver. The sunlinsol pcg module is designed to be compatible with any nvec-
tor implementation that supports a minimal subset of operations (N VClone, N VDotProd, N VScale,
N VLinearSum, N VProd, and N VDestroy). Unlike the spgmr and spfgmr algorithms, pcg requires
a fixed amount of memory that does not increase with the number of allowed iterations.

To access the sunlinsol pcg module, include the header file
sunlinsol/sunlinsol pcg.h. We note that the sunlinsol pcg module is accessible from sundials
packages without separately linking to the libsundials sunlinsolpcg module library.

8.15.1 SUNLinearSolver PCG description

Unlike all of the other iterative linear solvers supplied with sundials, pcg should only be used on
symmetric linear systems (e.g. mass matrix linear systems encountered in arkode). As a result, the
explanation of the role of scaling and preconditioning matrices given in general must be modified in
this scenario. The pcg algorithm solves a linear system Ax = b where A is a symmetric (AT = A),
real-valued matrix. Preconditioning is allowed, and is applied in a symmetric fashion on both the
right and left. Scaling is also allowed and is applied symmetrically. We denote the preconditioner and
scaling matrices as follows:

• P is the preconditioner (assumed symmetric),

• S is a diagonal matrix of scale factors.

The matrices A and P are not required explicitly; only routines that provide A and P−1 as operators
are required. The diagonal of the matrix S is held in a single nvector, supplied by the user.

In this notation, pcg applies the underlying CG algorithm to the equivalent transformed system

Ãx̃ = b̃ (8.3)

where

Ã = SP−1AP−1S,

b̃ = SP−1b, (8.4)

x̃ = S−1Px.

The scaling matrix must be chosen so that the vectors SP−1b and S−1Px have dimensionless com-
ponents.

The stopping test for the PCG iterations is on the L2 norm of the scaled preconditioned residual:

‖b̃− Ãx̃‖2 < δ

⇔
‖SP−1b− SP−1Ax‖2 < δ

⇔
‖P−1b− P−1Ax‖S < δ

where ‖v‖S =
√
vTSTSv, with an input tolerance δ.

This solver is constructed to perform the following operations:

• During construction all nvector solver data is allocated, with vectors cloned from a template
nvector that is input, and default solver parameters are set.

• User-facing “set” routines may be called to modify default solver parameters.

210 Description of the SUNLinearSolver module

• Additional “set” routines are called by the sundials solver that interfaces with sunlinsol pcg
to supply the ATimes, PSetup, and Psolve function pointers and s scaling vector.

• In the “initialize” call, the solver parameters are checked for validity.

• In the “setup” call, any non-NULL PSetup function is called. Typically, this is provided by the
sundials solver itself, that translates between the generic PSetup function and the solver-specific
routine (solver-supplied or user-supplied).

• In the “solve” call the pcg iteration is performed. This will include scaling and preconditioning
if those options have been supplied.

8.15.2 SUNLinearSolver PCG functions

The sunlinsol pcg module provides the following user-callable constructor for creating a
SUNLinearSolver object.

SUNLinSol PCG

Call LS = SUNLinSol PCG(y, pretype, maxl);

Description The function SUNLinSol PCG creates and allocates memory for a pcg SUNLinearSolver

object.

Arguments y (N Vector) a template for cloning vectors needed within the solver

pretype (int) flag indicating whether to use preconditioning. Since the pcg al-
gorithm is designed to only support symmetric preconditioning, then any
of the pretype inputs PREC LEFT (1), PREC RIGHT (2), or PREC BOTH (3)
will result in use of the symmetric preconditioner; any other integer input
will result in the default (no preconditioning).

maxl (int) the number of linear iterations to allow; values ≤ 0 will result in
the default value (5).

Return value This returns a SUNLinearSolver object. If either y is incompatible then this
routine will return NULL.

Notes This routine will perform consistency checks to ensure that it is called with a consis-
tent nvector implementation (i.e. that it supplies the requisite vector operations).
If y is incompatible, then this routine will return NULL.

Although some sundials solvers are designed to only work with left precondi-
tioning (ida and idas) and others with only right preconditioning (kinsol), pcg
should only be used with these packages when the linear systems are known to be
symmetric. Since the scaling of matrix rows and columns must be identical in a
symmetric matrix, symmetric preconditioning should work appropriately even for
packages designed with one-sided preconditioning in mind.

Deprecated Name For backward compatibility, the wrapper function SUNPCG with idential input and
output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol PCG when using the Fortran 2003 interface
module.

The sunlinsol pcg module defines implementations of all “iterative” linear solver operations listed
in Sections 8.1.1 – 8.1.3:

• SUNLinSolGetType PCG

• SUNLinSolInitialize PCG

• SUNLinSolSetATimes PCG

8.15 The SUNLinearSolver PCG implementation 211

• SUNLinSolSetPreconditioner PCG

• SUNLinSolSetScalingVectors PCG – since pcg only supports symmetric scaling, the second
nvector argument to this function is ignored

• SUNLinSolSetup PCG

• SUNLinSolSolve PCG

• SUNLinSolNumIters PCG

• SUNLinSolResNorm PCG

• SUNLinSolResid PCG

• SUNLinSolLastFlag PCG

• SUNLinSolSpace PCG

• SUNLinSolFree PCG

All of the listed operations are callable via the Fortran 2003 interface module by prepending an ‘F’
to the function name.

The sunlinsol pcg module also defines the following additional user-callable functions.

SUNLinSol PCGSetPrecType

Call retval = SUNLinSol PCGSetPrecType(LS, pretype);

Description The function SUNLinSol PCGSetPrecType updates the flag indicating use of pre-
conditioning in the sunlinsol pcg object.

Arguments LS (SUNLinearSolver) the sunlinsol pcg object to update

pretype (int) flag indicating use of preconditioning, allowed values match those
discussed in SUNLinSol PCG.

Return value This routine will return with one of the error codes SUNLS ILL INPUT (illegal
pretype), SUNLS MEM NULL (S is NULL) or SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNPCGSetPrecType with iden-
tial input and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol PCGSetPrecType when using the Fortran
2003 interface module.

SUNLinSol PCGSetMaxl

Call retval = SUNLinSol PCGSetMaxl(LS, maxl);

Description The function SUNLinSol PCGSetMaxl updates the number of linear solver iterations
to allow.

Arguments LS (SUNLinearSolver) the sunlinsol pcg object to update

maxl (int) flag indicating the number of iterations to allow; values ≤ 0 will result
in the default value (5)

Return value This routine will return with one of the error codes SUNLS MEM NULL (S is NULL) or
SUNLS SUCCESS.

Deprecated Name For backward compatibility, the wrapper function SUNPCGSetMaxl with idential
input and output arguments is also provided.

F2003 Name This function is callable as FSUNLinSol PCGSetMaxl when using the Fortran 2003
interface module.

212 Description of the SUNLinearSolver module

8.15.3 SUNLinearSolver PCG Fortran interfaces

The sunlinsol pcg module provides a Fortran 2003 module as well as Fortran 77 style interface
functions for use from Fortran applications.

FORTRAN 2003 interface module

The fsunlinsol pcg mod Fortran module defines interfaces to all sunlinsol pcg C functions using
the intrinsic iso c binding module which provides a standardized mechanism for interoperating with
C. As noted in the C function descriptions above, the interface functions are named after the corre-
sponding C function, but with a leading ‘F’. For example, the function SUNLinSol PCG is interfaced
as FSUNLinSol PCG.

The Fortran 2003 sunlinsol pcg interface module can be accessed with the use statement,
i.e. use fsunlinsol pcg mod, and linking to the library libsundials fsunlinsolpcg mod.lib in
addition to the C library. For details on where the library and module file fsunlinsol pcg mod.mod

are installed see Appendix A. We note that the module is accessible from the Fortran 2003 sundials
integrators without separately linking to the libsundials fsunlinsolpcg mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran 77 interface module, the sunlinsol pcg module also includes a
Fortran-callable function for creating a SUNLinearSolver object.

FSUNPCGINIT

Call FSUNPCGINIT(code, pretype, maxl, ier)

Description The function FSUNPCGINIT can be called for Fortran programs to create a sunlin-
sol pcg object.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating number of iterations to allow

Return value ier is a return completion flag equal to 0 for a success return and -1 otherwise. See
printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function SUNLinSol PCG.

Additionally, when using arkode with a non-identity mass matrix, the sunlinsol pcg module in-
cludes a Fortran-callable function for creating a SUNLinearSolver mass matrix solver object.

FSUNMASSPCGINIT

Call FSUNMASSPCGINIT(pretype, maxl, ier)

Description The function FSUNMASSPCGINIT can be called for Fortran programs to create a sunlin-
sol pcg object for mass matrix linear systems.

Arguments pretype (int*) flag indicating desired preconditioning type

maxl (int*) flag indicating number of iterations to allow

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes This routine must be called after the nvector object has been initialized.

Allowable values for pretype and maxl are the same as for the C function SUNLinSol PCG.

The SUNLinSol PCGSetPrecType and SUNLinSol PCGSetMaxl routines also support Fortran interfaces
for the system and mass matrix solvers.

8.15 The SUNLinearSolver PCG implementation 213

FSUNPCGSETPRECTYPE

Call FSUNPCGSETPRECTYPE(code, pretype, ier)

Description The function FSUNPCGSETPRECTYPE can be called for Fortran programs to change the
type of preconditioning to use.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3
for kinsol, and 4 for arkode).

pretype (int*) flag indicating the type of preconditioning to use.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol PCGSetPrecType for complete further documentation of this routine.

FSUNMASSPCGSETPRECTYPE

Call FSUNMASSPCGSETPRECTYPE(pretype, ier)

Description The function FSUNMASSPCGSETPRECTYPE can be called for Fortran programs to change
the type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNPCGSETPRECTYPE above, except that code is not
needed since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol PCGSetPrecType for complete further documentation of this routine.

FSUNPCGSETMAXL

Call FSUNPCGSETMAXL(code, maxl, ier)

Description The function FSUNPCGSETMAXL can be called for Fortran programs to change the maxi-
mum number of iterations to allow.

Arguments code (int*) is an integer input specifying the solver id (1 for cvode, 2 for ida, 3 for
kinsol, and 4 for arkode).

maxl (int*) the number of iterations to allow.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol PCGSetMaxl for complete further documentation of this routine.

FSUNMASSPCGSETMAXL

Call FSUNMASSPCGSETMAXL(maxl, ier)

Description The function FSUNMASSPCGSETMAXL can be called for Fortran programs to change the
type of preconditioning for mass matrix linear systems.

Arguments The arguments are identical to FSUNPCGSETMAXL above, except that code is not needed
since mass matrix linear systems only arise in arkode.

Return value ier is a int return completion flag equal to 0 for a success return and -1 otherwise.
See printed message for details in case of failure.

Notes See SUNLinSol PCGSetMaxl for complete further documentation of this routine.

214 Description of the SUNLinearSolver module

8.15.4 SUNLinearSolver PCG content

The sunlinsol pcg module defines the content field of a SUNLinearSolver as the following structure:

struct _SUNLinearSolverContent_PCG {

int maxl;

int pretype;

int numiters;

realtype resnorm;

long int last_flag;

ATimesFn ATimes;

void* ATData;

PSetupFn Psetup;

PSolveFn Psolve;

void* PData;

N_Vector s;

N_Vector r;

N_Vector p;

N_Vector z;

N_Vector Ap;

};

These entries of the content field contain the following information:
maxl - number of pcg iterations to allow (default is 5),

pretype - flag for use of preconditioning (default is none),

numiters - number of iterations from the most-recent solve,

resnorm - final linear residual norm from the most-recent solve,

last flag - last error return flag from an internal function,

ATimes - function pointer to perform Av product,

ATData - pointer to structure for ATimes,

Psetup - function pointer to preconditioner setup routine,

Psolve - function pointer to preconditioner solve routine,

PData - pointer to structure for Psetup and Psolve,

s - vector pointer for supplied scaling matrix (default is NULL),

r - a nvector which holds the preconditioned linear system residual,

p, z, Ap - nvectors used for workspace by the pcg algorithm.

8.16 SUNLinearSolver Examples

There are SUNLinearSolver examples that may be installed for each implementation; these make
use of the functions in test sunlinsol.c. These example functions show simple usage of the
SUNLinearSolver family of functions. The inputs to the examples depend on the linear solver type,
and are output to stdout if the example is run without the appropriate number of command-line
arguments.
The following is a list of the example functions in test sunlinsol.c:

• Test SUNLinSolGetType: Verifies the returned solver type against the value that should be
returned.

• Test SUNLinSolInitialize: Verifies that SUNLinSolInitialize can be called and returns
successfully.

8.16 SUNLinearSolver Examples 215

• Test SUNLinSolSetup: Verifies that SUNLinSolSetup can be called and returns successfully.

• Test SUNLinSolSolve: Given a sunmatrix object A, nvector objects x and b (where Ax = b)
and a desired solution tolerance tol, this routine clones x into a new vector y, calls
SUNLinSolSolve to fill y as the solution to Ay = b (to the input tolerance), verifies that each
entry in x and y match to within 10*tol, and overwrites x with y prior to returning (in case
the calling routine would like to investigate further).

• Test SUNLinSolSetATimes (iterative solvers only): Verifies that SUNLinSolSetATimes can be
called and returns successfully.

• Test SUNLinSolSetPreconditioner (iterative solvers only): Verifies that
SUNLinSolSetPreconditioner can be called and returns successfully.

• Test SUNLinSolSetScalingVectors (iterative solvers only): Verifies that
SUNLinSolSetScalingVectors can be called and returns successfully.

• Test SUNLinSolLastFlag: Verifies that SUNLinSolLastFlag can be called, and outputs the
result to stdout.

• Test SUNLinSolNumIters (iterative solvers only): Verifies that SUNLinSolNumIters can be
called, and outputs the result to stdout.

• Test SUNLinSolResNorm (iterative solvers only): Verifies that SUNLinSolResNorm can be called,
and that the result is non-negative.

• Test SUNLinSolResid (iterative solvers only): Verifies that SUNLinSolResid can be called.

• Test SUNLinSolSpace verifies that SUNLinSolSpace can be called, and outputs the results to
stdout.

We’ll note that these tests should be performed in a particular order. For either direct or iterative
linear solvers, Test SUNLinSolInitialize must be called before Test SUNLinSolSetup, which must
be called before Test SUNLinSolSolve. Additionally, for iterative linear solvers
Test SUNLinSolSetATimes, Test SUNLinSolSetPreconditioner and
Test SUNLinSolSetScalingVectors should be called before Test SUNLinSolInitialize; similarly
Test SUNLinSolNumIters, Test SUNLinSolResNorm and Test SUNLinSolResid should be called after
Test SUNLinSolSolve. These are called in the appropriate order in all of the example problems.

Appendix A

SUNDIALS Package Installation
Procedure

The installation of any sundials package is accomplished by installing the sundials suite as a whole,
according to the instructions that follow. The same procedure applies whether or not the downloaded
file contains one or all solvers in sundials.

The sundials suite (or individual solvers) are distributed as compressed archives (.tar.gz).
The name of the distribution archive is of the form solver-x.y.z.tar.gz, where solver is one of:
sundials, cvode, cvodes, arkode, ida, idas, or kinsol, and x.y.z represents the version number
(of the sundials suite or of the individual solver). To begin the installation, first uncompress and
expand the sources, by issuing

% tar xzf solver-x.y.z.tar.gz

This will extract source files under a directory solver-x.y.z.
Starting with version 2.6.0 of sundials, CMake is the only supported method of installation.

The explanations of the installation procedure begins with a few common observations:

• The remainder of this chapter will follow these conventions:

solverdir is the directory solver-x.y.z created above; i.e., the directory containing the sundi-
als sources.

builddir is the (temporary) directory under which sundials is built.

instdir is the directory under which the sundials exported header files and libraries will be
installed. Typically, header files are exported under a directory instdir/include while
libraries are installed under instdir/CMAKE INSTALL LIBDIR, with instdir and
CMAKE INSTALL LIBDIR specified at configuration time.

• For sundials CMake-based installation, in-source builds are prohibited; in other words, the
build directory builddir can not be the same as solverdir and such an attempt will lead to
an error. This prevents “polluting” the source tree and allows efficient builds for different
configurations and/or options.

• The installation directory instdir can not be the same as the source directory solverdir. !

• By default, only the libraries and header files are exported to the installation directory instdir.
If enabled by the user (with the appropriate toggle for CMake), the examples distributed with
sundials will be built together with the solver libraries but the installation step will result
in exporting (by default in a subdirectory of the installation directory) the example sources
and sample outputs together with automatically generated configuration files that reference the
installed sundials headers and libraries. As such, these configuration files for the sundials ex-
amples can be used as “templates” for your own problems. CMake installs CMakeLists.txt files

218 SUNDIALS Package Installation Procedure

and also (as an option available only under Unix/Linux) Makefile files. Note this installation
approach also allows the option of building the sundials examples without having to install
them. (This can be used as a sanity check for the freshly built libraries.)

• Even if generation of shared libraries is enabled, only static libraries are created for the FCMIX
modules. (Because of the use of fixed names for the Fortran user-provided subroutines, FCMIX
shared libraries would result in “undefined symbol” errors at link time.)

A.1 CMake-based installation

CMake-based installation provides a platform-independent build system. CMake can generate Unix
and Linux Makefiles, as well as KDevelop, Visual Studio, and (Apple) XCode project files from the
same configuration file. In addition, CMake also provides a GUI front end and which allows an
interactive build and installation process.

The sundials build process requires CMake version 3.1.3 or higher and a working C compiler. On
Unix-like operating systems, it also requires Make (and curses, including its development libraries,
for the GUI front end to CMake, ccmake), while on Windows it requires Visual Studio. CMake is con-
tinually adding new features, and the latest version can be downloaded from http://www.cmake.org.
Build instructions for CMake (only necessary for Unix-like systems) can be found on the CMake web-
site. Once CMake is installed, Linux/Unix users will be able to use ccmake, while Windows users will
be able to use CMakeSetup.

As previously noted, when using CMake to configure, build and install sundials, it is always
required to use a separate build directory. While in-source builds are possible, they are explicitly
prohibited by the sundials CMake scripts (one of the reasons being that, unlike autotools, CMake
does not provide a make distclean procedure and it is therefore difficult to clean-up the source tree
after an in-source build). By ensuring a separate build directory, it is an easy task for the user to
clean-up all traces of the build by simply removing the build directory. CMake does generate a make

clean which will remove files generated by the compiler and linker.

A.1.1 Configuring, building, and installing on Unix-like systems

The default CMake configuration will build all included solvers and associated examples and will build
static and shared libraries. The instdir defaults to /usr/local and can be changed by setting the
CMAKE INSTALL PREFIX variable. Support for FORTRAN and all other options are disabled.

CMake can be used from the command line with the cmake command, or from a curses-based
GUI by using the ccmake command. Examples for using both methods will be presented. For the
examples shown it is assumed that there is a top level sundials directory with appropriate source,
build and install directories:

% mkdir (...)sundials/instdir

% mkdir (...)sundials/builddir

% cd (...)sundials/builddir

Building with the GUI

Using CMake with the GUI follows this general process:

• Select and modify values, run configure (c key)

• New values are denoted with an asterisk

• To set a variable, move the cursor to the variable and press enter

– If it is a boolean (ON/OFF) it will toggle the value

– If it is string or file, it will allow editing of the string

A.1 CMake-based installation 219

– For file and directories, the <tab> key can be used to complete

• Repeat until all values are set as desired and the generate option is available (g key)

• Some variables (advanced variables) are not visible right away

• To see advanced variables, toggle to advanced mode (t key)

• To search for a variable press / key, and to repeat the search, press the n key

To build the default configuration using the GUI, from the builddir enter the ccmake command
and point to the solverdir:

% ccmake ../solverdir

The default configuration screen is shown in Figure A.1.

Figure A.1: Default configuration screen. Note: Initial screen is empty. To get this default config-
uration, press ’c’ repeatedly (accepting default values denoted with asterisk) until the ’g’ option is
available.

The default instdir for both sundials and corresponding examples can be changed by setting the
CMAKE INSTALL PREFIX and the EXAMPLES INSTALL PATH as shown in figure A.2.

Pressing the (g key) will generate makefiles including all dependencies and all rules to build sun-
dials on this system. Back at the command prompt, you can now run:

220 SUNDIALS Package Installation Procedure

Figure A.2: Changing the instdir for sundials and corresponding examples

% make

To install sundials in the installation directory specified in the configuration, simply run:

% make install

Building from the command line

Using CMake from the command line is simply a matter of specifying CMake variable settings with
the cmake command. The following will build the default configuration:

% cmake -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \

> ../solverdir

% make

% make install

A.1.2 Configuration options (Unix/Linux)

A complete list of all available options for a CMake-based sundials configuration is provide below.
Note that the default values shown are for a typical configuration on a Linux system and are provided
as illustration only.

A.1 CMake-based installation 221

BLAS ENABLE - Enable BLAS support
Default: OFF
Note: Setting this option to ON will trigger additional CMake options. See additional informa-
tion on building with BLAS enabled in A.1.4.

BLAS LIBRARIES - BLAS library
Default: /usr/lib/libblas.so
Note: CMake will search for libraries in your LD LIBRARY PATH prior to searching default system
paths.

BUILD ARKODE - Build the ARKODE library
Default: ON

BUILD CVODE - Build the CVODE library
Default: ON

BUILD CVODES - Build the CVODES library
Default: ON

BUILD IDA - Build the IDA library
Default: ON

BUILD IDAS - Build the IDAS library
Default: ON

BUILD KINSOL - Build the KINSOL library
Default: ON

BUILD SHARED LIBS - Build shared libraries
Default: ON

BUILD STATIC LIBS - Build static libraries
Default: ON

CMAKE BUILD TYPE - Choose the type of build, options are: None (CMAKE C FLAGS used), Debug,
Release, RelWithDebInfo, and MinSizeRel

Default:
Note: Specifying a build type will trigger the corresponding build type specific compiler flag
options below which will be appended to the flags set by CMAKE <language> FLAGS.

CMAKE C COMPILER - C compiler
Default: /usr/bin/cc

CMAKE C FLAGS - Flags for C compiler
Default:

CMAKE C FLAGS DEBUG - Flags used by the C compiler during debug builds
Default: -g

CMAKE C FLAGS MINSIZEREL - Flags used by the C compiler during release minsize builds
Default: -Os -DNDEBUG

CMAKE C FLAGS RELEASE - Flags used by the C compiler during release builds
Default: -O3 -DNDEBUG

CMAKE CXX COMPILER - C++ compiler
Default: /usr/bin/c++
Note: A C++ compiler (and all related options) are only triggered if C++ examples are enabled
(EXAMPLES ENABLE CXX is ON). All sundials solvers can be used from C++ applications by
default without setting any additional configuration options.

222 SUNDIALS Package Installation Procedure

CMAKE CXX FLAGS - Flags for C++ compiler
Default:

CMAKE CXX FLAGS DEBUG - Flags used by the C++ compiler during debug builds
Default: -g

CMAKE CXX FLAGS MINSIZEREL - Flags used by the C++ compiler during release minsize builds
Default: -Os -DNDEBUG

CMAKE CXX FLAGS RELEASE - Flags used by the C++ compiler during release builds
Default: -O3 -DNDEBUG

CMAKE Fortran COMPILER - Fortran compiler
Default: /usr/bin/gfortran
Note: Fortran support (and all related options) are triggered only if either Fortran-C sup-
port is enabled (FCMIX ENABLE is ON) or BLAS/LAPACK support is enabled (BLAS ENABLE or
LAPACK ENABLE is ON).

CMAKE Fortran FLAGS - Flags for Fortran compiler
Default:

CMAKE Fortran FLAGS DEBUG - Flags used by the Fortran compiler during debug builds
Default: -g

CMAKE Fortran FLAGS MINSIZEREL - Flags used by the Fortran compiler during release minsize builds
Default: -Os

CMAKE Fortran FLAGS RELEASE - Flags used by the Fortran compiler during release builds
Default: -O3

CMAKE INSTALL PREFIX - Install path prefix, prepended onto install directories
Default: /usr/local
Note: The user must have write access to the location specified through this option. Ex-
ported sundials header files and libraries will be installed under subdirectories include and
CMAKE INSTALL LIBDIR of CMAKE INSTALL PREFIX, respectively.

CMAKE INSTALL LIBDIR - Library installation directory
Default:
Note: This is the directory within CMAKE INSTALL PREFIX that the sundials libraries will be
installed under. The default is automatically set based on the operating system using the
GNUInstallDirs CMake module.

Fortran INSTALL MODDIR - Fortran module installation directory
Default: fortran

CUDA ENABLE - Build the sundials cuda vector module.
Default: OFF

EXAMPLES ENABLE C - Build the sundials C examples
Default: ON

EXAMPLES ENABLE CUDA - Build the sundials cuda examples
Default: OFF
Note: You need to enable cuda support to build these examples.

EXAMPLES ENABLE CXX - Build the sundials C++ examples
Default: OFF unless Trilinos ENABLE is ON.

EXAMPLES ENABLE F77 - Build the sundials Fortran77 examples
Default: ON (if F77 INTERFACE ENABLE is ON)

A.1 CMake-based installation 223

EXAMPLES ENABLE F90 - Build the sundials Fortran90/Fortran2003 examples
Default: ON (if F77 INTERFACE ENABLE or F2003 INTERFACE ENABLE is ON)

EXAMPLES INSTALL - Install example files
Default: ON
Note: This option is triggered when any of the sundials example programs are enabled
(EXAMPLES ENABLE <language> is ON). If the user requires installation of example programs
then the sources and sample output files for all sundials modules that are currently enabled
will be exported to the directory specified by EXAMPLES INSTALL PATH. A CMake configuration
script will also be automatically generated and exported to the same directory. Additionally, if
the configuration is done under a Unix-like system, makefiles for the compilation of the example
programs (using the installed sundials libraries) will be automatically generated and exported
to the directory specified by EXAMPLES INSTALL PATH.

EXAMPLES INSTALL PATH - Output directory for installing example files
Default: /usr/local/examples
Note: The actual default value for this option will be an examples subdirectory created under
CMAKE INSTALL PREFIX.

F77 INTERFACE ENABLE - Enable Fortran-C support via the Fortran 77 interfaces
Default: OFF

F2003 INTERFACE ENABLE - Enable Fortran-C support via the Fortran 2003 interfaces
Default: OFF

HYPRE ENABLE - Enable hypre support
Default: OFF
Note: See additional information on building with hypre enabled in A.1.4.

HYPRE INCLUDE DIR - Path to hypre header files

HYPRE LIBRARY DIR - Path to hypre installed library files

KLU ENABLE - Enable KLU support
Default: OFF
Note: See additional information on building with KLU enabled in A.1.4.

KLU INCLUDE DIR - Path to SuiteSparse header files

KLU LIBRARY DIR - Path to SuiteSparse installed library files

LAPACK ENABLE - Enable LAPACK support
Default: OFF
Note: Setting this option to ON will trigger additional CMake options. See additional informa-
tion on building with LAPACK enabled in A.1.4.

LAPACK LIBRARIES - LAPACK (and BLAS) libraries
Default: /usr/lib/liblapack.so;/usr/lib/libblas.so
Note: CMake will search for libraries in your LD LIBRARY PATH prior to searching default system
paths.

MPI ENABLE - Enable MPI support (build the parallel nvector).
Default: OFF
Note: Setting this option to ON will trigger several additional options related to MPI.

MPI C COMPILER - mpicc program
Default:

224 SUNDIALS Package Installation Procedure

MPI CXX COMPILER - mpicxx program
Default:
Note: This option is triggered only if MPI is enabled (MPI ENABLE is ON) and C++ examples are
enabled (EXAMPLES ENABLE CXX is ON). All sundials solvers can be used from C++ MPI appli-
cations by default without setting any additional configuration options other than MPI ENABLE.

MPI Fortran COMPILER - mpif77 or mpif90 program
Default:
Note: This option is triggered only if MPI is enabled (MPI ENABLE is ON) and Fortran-C support
is enabled (F77 INTERFACE ENABLE or F2003 INTERFACE ENABLE is ON).

MPIEXEC EXECUTABLE - Specify the executable for running MPI programs
Default: mpirun
Note: This option is triggered only if MPI is enabled (MPI ENABLE is ON).

OPENMP ENABLE - Enable OpenMP support (build the OpenMP nvector).
Default: OFF

OPENMP DEVICE ENABLE - Enable OpenMP device offloading (build the OpenMPDEV nvector) if sup-
ported by the provided compiler.
Default: OFF

SKIP OPENMP DEVICE CHECK - advanced option - Skip the check done to see if the OpenMP provided
by the compiler supports OpenMP device offloading.
Default: OFF

PETSC ENABLE - Enable petsc support
Default: OFF
Note: See additional information on building with petsc enabled in A.1.4.

PETSC INCLUDE DIR - Path to petsc header files

PETSC LIBRARY DIR - Path to petsc installed library files

PTHREAD ENABLE - Enable Pthreads support (build the Pthreads nvector).
Default: OFF

RAJA ENABLE - Enable raja support (build the raja nvector).
Default: OFF
Note: You need to enable cuda in order to build the raja vector module.

SUNDIALS F77 FUNC CASE - advanced option - Specify the case to use in the Fortran name-mangling
scheme, options are: lower or upper
Default:
Note: The build system will attempt to infer the Fortran name-mangling scheme using the
Fortran compiler. This option should only be used if a Fortran compiler is not available or
to override the inferred or default (lower) scheme if one can not be determined. If used,
SUNDIALS F77 FUNC UNDERSCORES must also be set.

SUNDIALS F77 FUNC UNDERSCORES - advanced option - Specify the number of underscores to append
in the Fortran name-mangling scheme, options are: none, one, or two
Default:
Note: The build system will attempt to infer the Fortran name-mangling scheme using the
Fortran compiler. This option should only be used if a Fortran compiler is not available
or to override the inferred or default (one) scheme if one can not be determined. If used,
SUNDIALS F77 FUNC CASE must also be set.

A.1 CMake-based installation 225

SUNDIALS INDEX TYPE - advanced option - Integer type used for sundials indices. The size must
match the size provided for the
SUNDIALS INDEX SIZE option.
Default:
Note: In past SUNDIALS versions, a user could set this option to INT64 T to use 64-bit integers,
or INT32 T to use 32-bit integers. Starting in SUNDIALS 3.2.0, these special values are dep-
recated. For SUNDIALS 3.2.0 and up, a user will only need to use the SUNDIALS INDEX SIZE

option in most cases.

SUNDIALS INDEX SIZE - Integer size (in bits) used for indices in sundials, options are: 32 or 64
Default: 64
Note: The build system tries to find an integer type of appropriate size. Candidate 64-bit
integer types are (in order of preference): int64 t, int64, long long, and long. Candidate
32-bit integers are (in order of preference): int32 t, int, and long. The advanced option,
SUNDIALS INDEX TYPE can be used to provide a type not listed here.

SUNDIALS PRECISION - Precision used in sundials, options are: double, single, or extended
Default: double

SUPERLUMT ENABLE - Enable SuperLU MT support
Default: OFF
Note: See additional information on building with SuperLU MT enabled in A.1.4.

SUPERLUMT INCLUDE DIR - Path to SuperLU MT header files (typically SRC directory)

SUPERLUMT LIBRARY DIR - Path to SuperLU MT installed library files

SUPERLUMT THREAD TYPE - Must be set to Pthread or OpenMP
Default: Pthread

Trilinos ENABLE - Enable Trilinos support (build the Tpetra nvector).
Default: OFF

Trilinos DIR - Path to the Trilinos install directory.
Default:

TRILINOS INTERFACE C COMPILER - advanced option - Set the C compiler for building the Trilinos
interface (i.e., nvector trilinos and the examples that use it).
Default: The C compiler exported from the found Trilinos installation if USE XSDK DEFAULTS=OFF.
CMAKE C COMPILER or MPI C COMPILER if USE XSDK DEFAULTS=ON.
Note: It is recommended to use the same compiler that was used to build the Trilinos library.

TRILINOS INTERFACE C COMPILER FLAGS - advanced option - Set the C compiler flags for Trilinos
interface (i.e., nvector trilinos and the examples that use it).
Default: The C compiler flags exported from the found Trilinos installation if USE XSDK DEFAULTS=OFF.
CMAKE C FLAGS if USE XSDK DEFAULTS=ON.
Note: It is recommended to use the same flags that were used to build the Trilinos library.

TRILINOS INTERFACE CXX COMPILER - advanced option - Set the C++ compiler for builing Trilinos
interface (i.e., nvector trilinos and the examples that use it).
Default: The C++ compiler exported from the found Trilinos installation if USE XSDK DEFAULTS=OFF.
CMAKE CXX COMPILER or MPI CXX COMPILER if USE XSDK DEFAULTS=ON.
Note: It is recommended to use the same compiler that was used to build the Trilinos library.

TRILINOS INTERFACE CXX COMPILER FLAGS - advanced option - Set the C++ compiler flags for Trili-
nos interface (i.e., nvector trilinos and the examples that use it).
Default: The C++ compiler flags exported from the found Trilinos installation if USE XSDK DEFAULTS=OFF.
CMAKE CXX FLAGS if USE XSDK DEFAULTS=ON.
Note: Is is recommended to use the same flags that were used to build the Trilinos library.

226 SUNDIALS Package Installation Procedure

USE GENERIC MATH - Use generic (stdc) math libraries
Default: ON

xSDK Configuration Options

sundials supports CMake configuration options defined by the Extreme-scale Scientific Software
Development Kit (xSDK) community policies (see https://xsdk.info for more information). xSDK
CMake options are unused by default but may be activated by setting USE XSDK DEFAULTS to ON.

When xSDK options are active, they will overwrite the corresponding sundials option and may!

have different default values (see details below). As such the equivalent sundials options should
not be used when configuring with xSDK options. In the GUI front end to CMake (ccmake), setting
USE XSDK DEFAULTS to ON will hide the corresponding sundials options as advanced CMake variables.
During configuration, messages are output detailing which xSDK flags are active and the equivalent
sundials options that are replaced. Below is a complete list xSDK options and the corresponding
sundials options if applicable.

TPL BLAS LIBRARIES - BLAS library
Default: /usr/lib/libblas.so
sundials equivalent: BLAS LIBRARIES

Note: CMake will search for libraries in your LD LIBRARY PATH prior to searching default system
paths.

TPL ENABLE BLAS - Enable BLAS support
Default: OFF
sundials equivalent: BLAS ENABLE

TPL ENABLE HYPRE - Enable hypre support
Default: OFF
sundials equivalent: HYPRE ENABLE

TPL ENABLE KLU - Enable KLU support
Default: OFF
sundials equivalent: KLU ENABLE

TPL ENABLE PETSC - Enable petsc support
Default: OFF
sundials equivalent: PETSC ENABLE

TPL ENABLE LAPACK - Enable LAPACK support
Default: OFF
sundials equivalent: LAPACK ENABLE

TPL ENABLE SUPERLUMT - Enable SuperLU MT support
Default: OFF
sundials equivalent: SUPERLUMT ENABLE

TPL HYPRE INCLUDE DIRS - Path to hypre header files
sundials equivalent: HYPRE INCLUDE DIR

TPL HYPRE LIBRARIES - hypre library
sundials equivalent: N/A

TPL KLU INCLUDE DIRS - Path to KLU header files
sundials equivalent: KLU INCLUDE DIR

TPL KLU LIBRARIES - KLU library
sundials equivalent: N/A

A.1 CMake-based installation 227

TPL LAPACK LIBRARIES - LAPACK (and BLAS) libraries
Default: /usr/lib/liblapack.so;/usr/lib/libblas.so
sundials equivalent: LAPACK LIBRARIES

Note: CMake will search for libraries in your LD LIBRARY PATH prior to searching default system
paths.

TPL PETSC INCLUDE DIRS - Path to petsc header files
sundials equivalent: PETSC INCLUDE DIR

TPL PETSC LIBRARIES - petsc library
sundials equivalent: N/A

TPL SUPERLUMT INCLUDE DIRS - Path to SuperLU MT header files
sundials equivalent: SUPERLUMT INCLUDE DIR

TPL SUPERLUMT LIBRARIES - SuperLU MT library
sundials equivalent: N/A

TPL SUPERLUMT THREAD TYPE - SuperLU MT library thread type
sundials equivalent: SUPERLUMT THREAD TYPE

USE XSDK DEFAULTS - Enable xSDK default configuration settings
Default: OFF
sundials equivalent: N/A
Note: Enabling xSDK defaults also sets CMAKE BUILD TYPE to Debug

XSDK ENABLE FORTRAN - Enable sundials Fortran interfaces
Default: OFF
sundials equivalent: F77 INTERFACE ENABLE/F2003 INTERFACE ENABLE

XSDK INDEX SIZE - Integer size (bits) used for indices in sundials, options are: 32 or 64
Default: 32
sundials equivalent: SUNDIALS INDEX SIZE

XSDK PRECISION - Precision used in sundials, options are: double, single, or quad
Default: double
sundials equivalent: SUNDIALS PRECISION

A.1.3 Configuration examples

The following examples will help demonstrate usage of the CMake configure options.
To configure sundials using the default C and Fortran compilers, and default mpicc and mpif77

parallel compilers, enable compilation of examples, and install libraries, headers, and example sources
under subdirectories of /home/myname/sundials/, use:

% cmake \

> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \

> -DMPI_ENABLE=ON \

> -DFCMIX_ENABLE=ON \

> /home/myname/sundials/solverdir

%

% make install

%

To disable installation of the examples, use:

228 SUNDIALS Package Installation Procedure

% cmake \

> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \

> -DMPI_ENABLE=ON \

> -DFCMIX_ENABLE=ON \

> -DEXAMPLES_INSTALL=OFF \

> /home/myname/sundials/solverdir

%

% make install

%

A.1.4 Working with external Libraries

The sundials suite contains many options to enable implementation flexibility when developing so-
lutions. The following are some notes addressing specific configurations when using the supported
third party libraries. When building sundials as a shared library external libraries any used with
sundials must also be build as a shared library or as a static library compiled with the -fPIC flag.!

Building with BLAS

sundials does not utilize BLAS directly but it may be needed by other external libraries that sun-
dials can be built with (e.g. LAPACK, petsc, SuperLU MT, etc.). To enable BLAS, set the
BLAS ENABLE option to ON. If the directory containing the BLAS library is in the LD LIBRARY PATH

environment variable, CMake will set the BLAS LIBRARIES variable accordingly, otherwise CMake will
attempt to find the BLAS library in standard system locations. To explicitly tell CMake what libraries
to use, the BLAS LIBRARIES variable can be set to the desired library. Example:

% cmake \

> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \

> -DBLAS_ENABLE=ON \

> -DBLAS_LIBRARIES=/myblaspath/lib/libblas.so \

> -DSUPERLUMT_ENABLE=ON \

> -DSUPERLUMT_INCLUDE_DIR=/mysuperlumtpath/SRC

> -DSUPERLUMT_LIBRARY_DIR=/mysuperlumtpath/lib

> /home/myname/sundials/solverdir

%

% make install

%

When allowing CMake to automatically locate the LAPACK library, CMake may also locate the!

corresponding BLAS library.
If a working Fortran compiler is not available to infer the Fortran name-mangling scheme, the op-

tions SUNDIALS F77 FUNC CASE and SUNDIALS F77 FUNC UNDERSCORES must be set in order to bypass
the check for a Fortran compiler and define the name-mangling scheme. The defaults for these options
in earlier versions of sundials were lower and one respectively.

Building with LAPACK

To enable LAPACK, set the LAPACK ENABLE option to ON. If the directory containing the LAPACK li-
brary is in the LD LIBRARY PATH environment variable, CMake will set the LAPACK LIBRARIES variable
accordingly, otherwise CMake will attempt to find the LAPACK library in standard system locations.
To explicitly tell CMake what library to use, the LAPACK LIBRARIES variable can be set to the de-
sired libraries. When setting the LAPACK location explicitly the location of the corresponding BLAS!

library will also need to be set. Example:

A.1 CMake-based installation 229

% cmake \

> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \

> -DBLAS_ENABLE=ON \

> -DBLAS_LIBRARIES=/mylapackpath/lib/libblas.so \

> -DLAPACK_ENABLE=ON \

> -DLAPACK_LIBRARIES=/mylapackpath/lib/liblapack.so \

> /home/myname/sundials/solverdir

%

% make install

%

When allowing CMake to automatically locate the LAPACK library, CMake may also locate the !

corresponding BLAS library.
If a working Fortran compiler is not available to infer the Fortran name-mangling scheme, the op-

tions SUNDIALS F77 FUNC CASE and SUNDIALS F77 FUNC UNDERSCORES must be set in order to bypass
the check for a Fortran compiler and define the name-mangling scheme. The defaults for these options
in earlier versions of sundials were lower and one respectively.

Building with KLU

The KLU libraries are part of SuiteSparse, a suite of sparse matrix software, available from the Texas
A&M University website: http://faculty.cse.tamu.edu/davis/suitesparse.html. sundials has
been tested with SuiteSparse version 4.5.3. To enable KLU, set KLU ENABLE to ON, set KLU INCLUDE DIR

to the include path of the KLU installation and set KLU LIBRARY DIR to the lib path of the KLU
installation. The CMake configure will result in populating the following variables: AMD LIBRARY,
AMD LIBRARY DIR, BTF LIBRARY, BTF LIBRARY DIR, COLAMD LIBRARY, COLAMD LIBRARY DIR, and
KLU LIBRARY.

Building with SuperLU MT

The SuperLU MT libraries are available for download from the Lawrence Berkeley National Labo-
ratory website: http://crd-legacy.lbl.gov/∼xiaoye/SuperLU/#superlu mt. sundials has been
tested with SuperLU MT version 3.1. To enable SuperLU MT, set SUPERLUMT ENABLE to ON, set
SUPERLUMT INCLUDE DIR to the SRC path of the SuperLU MT installation, and set the variable
SUPERLUMT LIBRARY DIR to the lib path of the SuperLU MT installation. At the same time, the
variable SUPERLUMT THREAD TYPE must be set to either Pthread or OpenMP.
Do not mix thread types when building sundials solvers. If threading is enabled for sundials by
having either OPENMP ENABLE or PTHREAD ENABLE set to ON then SuperLU MT should be set to use
the same threading type. !

Building with PETSc

The petsc libraries are available for download from the Argonne National Laboratory website: http://www.mcs.anl.gov/petsc.
sundials has been tested with petsc version 3.7.2. To enable petsc, set PETSC ENABLE to ON, set
PETSC INCLUDE DIR to the include path of the petsc installation, and set the variable PETSC LIBRARY DIR

to the lib path of the petsc installation.

Building with hypre

The hypre libraries are available for download from the Lawrence Livermore National Laboratory
website: http://computation.llnl.gov/projects/hypre. sundials has been tested with hypre
version 2.11.1. To enable hypre, set HYPRE ENABLE to ON, set HYPRE INCLUDE DIR to the include

path of the hypre installation, and set the variable HYPRE LIBRARY DIR to the lib path of the hypre
installation.

230 SUNDIALS Package Installation Procedure

Building with CUDA

sundials cuda modules and examples have been tested with version 8.0 of the cuda toolkit. To
build them, you need to install the Toolkit and compatible NVIDIA drivers. Both are available for
download from the NVIDIA website: https://developer.nvidia.com/cuda-downloads. To enable
cuda, set CUDA ENABLE to ON. If cuda is installed in a nonstandard location, you may be prompted to
set the variable CUDA TOOLKIT ROOT DIR with your cuda Toolkit installation path. To enable cuda
examples, set EXAMPLES ENABLE CUDA to ON.

Building with RAJA

raja is a performance portability layer developed by Lawrence Livermore National Laboratory and
can be obtained from https://github.com/LLNL/RAJA. sundials raja modules and examples have
been tested with raja version 0.3. Building sundials raja modules requires a cuda-enabled raja
installation. To enable raja, set CUDA ENABLE and RAJA ENABLE to ON. If raja is installed in a
nonstandard location you will be prompted to set the variable RAJA DIR with the path to the raja
CMake configuration file. To enable building the raja examples set EXAMPLES ENABLE CUDA to ON.

Building with Trilinos

Trilinos is a suite of numerical libraries developed by Sandia National Laboratories. It can be obtained
at https://github.com/trilinos/Trilinos. sundials Trilinos modules and examples have been
tested with Trilinos version 12.14. To enable Trilinos, set Trilinos ENABLE to ON. If Trilinos is installed
in a nonstandard location you will be prompted to set the variable Trilinos DIR with the path to
the Trilinos CMake configuration file. It is desireable to build the Trilinos vector interface with same
compiler and options that were used to build Trilinos. CMake will try to find the correct compiler
settings automatically from the Trilinos configuration file. If that is not successful, the compilers and
options can be manually set with the following CMake variables:

• Trilinos INTERFACE C COMPILER

• Trilinos INTERFACE C COMPILER FLAGS

• Trilinos INTERFACE CXX COMPILER

• Trilinos INTERFACE CXX COMPILER FLAGS

A.1.5 Testing the build and installation

If sundials was configured with EXAMPLES ENABLE <language> options to ON, then a set of regression
tests can be run after building with the make command by running:

% make test

Additionally, if EXAMPLES INSTALL was also set to ON, then a set of smoke tests can be run after
installing with the make install command by running:

% make test_install

A.2 Building and Running Examples

Each of the sundials solvers is distributed with a set of examples demonstrating basic usage. To
build and install the examples, set at least of the EXAMPLES ENABLE <language> options to ON,
and set EXAMPLES INSTALL to ON. Specify the installation path for the examples with the variable
EXAMPLES INSTALL PATH. CMake will generate CMakeLists.txt configuration files (and Makefile

files if on Linux/Unix) that reference the installed sundials headers and libraries.

A.3 Configuring, building, and installing on Windows 231

Either the CMakeLists.txt file or the traditional Makefile may be used to build the examples as
well as serve as a template for creating user developed solutions. To use the supplied Makefile simply
run make to compile and generate the executables. To use CMake from within the installed example
directory, run cmake (or ccmake to use the GUI) followed by make to compile the example code.
Note that if CMake is used, it will overwrite the traditional Makefile with a new CMake-generated
Makefile. The resulting output from running the examples can be compared with example output
bundled in the sundials distribution.
NOTE: There will potentially be differences in the output due to machine architecture, compiler
versions, use of third party libraries etc. !

A.3 Configuring, building, and installing on Windows

CMake can also be used to build sundials on Windows. To build sundials for use with Visual
Studio the following steps should be performed:

1. Unzip the downloaded tar file(s) into a directory. This will be the solverdir

2. Create a separate builddir

3. Open a Visual Studio Command Prompt and cd to builddir

4. Run cmake-gui ../solverdir

(a) Hit Configure

(b) Check/Uncheck solvers to be built

(c) Change CMAKE INSTALL PREFIX to instdir

(d) Set other options as desired

(e) Hit Generate

5. Back in the VS Command Window:

(a) Run msbuild ALL BUILD.vcxproj

(b) Run msbuild INSTALL.vcxproj

The resulting libraries will be in the instdir. The sundials project can also now be opened in Visual
Studio. Double click on the ALL BUILD.vcxproj file to open the project. Build the whole solution to
create the sundials libraries. To use the sundials libraries in your own projects, you must set the
include directories for your project, add the sundials libraries to your project solution, and set the
sundials libraries as dependencies for your project.

A.4 Installed libraries and exported header files

Using the CMake sundials build system, the command

% make install

will install the libraries under libdir and the public header files under includedir. The values for these
directories are instdir/CMAKE INSTALL LIBDIR and instdir/include, respectively. The location can be
changed by setting the CMake variable CMAKE INSTALL PREFIX. Although all installed libraries reside
under libdir/CMAKE INSTALL LIBDIR, the public header files are further organized into subdirectories
under includedir/include.

The installed libraries and exported header files are listed for reference in Table A.1. The file
extension .lib is typically .so for shared libraries and .a for static libraries. Note that, in the Tables,
names are relative to libdir for libraries and to includedir for header files.

232 SUNDIALS Package Installation Procedure

A typical user program need not explicitly include any of the shared sundials header files from
under the includedir/include/sundials directory since they are explicitly included by the appropriate
solver header files (e.g., cvode dense.h includes sundials dense.h). However, it is both legal and
safe to do so, and would be useful, for example, if the functions declared in sundials dense.h are to
be used in building a preconditioner.

A.4 Installed libraries and exported header files 233

Table A.1: sundials libraries and header files
shared Libraries n/a

Header files sundials/sundials config.h
sundials/sundials fconfig.h
sundials/sundials types.h
sundials/sundials math.h
sundials/sundials nvector.h
sundials/sundials fnvector.h
sundials/sundials matrix.h
sundials/sundials linearsolver.h
sundials/sundials iterative.h
sundials/sundials direct.h
sundials/sundials dense.h
sundials/sundials band.h
sundials/sundials nonlinearsolver.h
sundials/sundials version.h
sundials/sundials mpi types.h

nvector serial Libraries libsundials nvecserial.lib
libsundials fnvecserial mod.lib
libsundials fnvecserial.a

Header files nvector/nvector serial.h
Module
files

fnvector serial mod.mod

nvector parallel Libraries libsundials nvecparallel.lib libsundials fnvecparallel.a
Header files nvector/nvector parallel.h

nvector openmp Libraries libsundials nvecopenmp.lib
libsundials fnvecopenmp mod.lib
libsundials fnvecopenmp.a

Header files nvector/nvector openmp.h
Module
files

fnvector openmp mod.mod

nvector openmpdev Libraries libsundials nvecopenmpdev.lib
Header files nvector/nvector openmpdev.h

nvector pthreads Libraries libsundials nvecpthreads.lib
libsundials fnvecpthreads mod.lib
libsundials fnvecpthreads.a

Header files nvector/nvector pthreads.h
Module
files

fnvector pthreads mod.mod

nvector parhyp Libraries libsundials nvecparhyp.lib
Header files nvector/nvector parhyp.h

continued on next page

234 SUNDIALS Package Installation Procedure

continued from last page

nvector petsc Libraries libsundials nvecpetsc.lib
Header files nvector/nvector petsc.h

nvector cuda Libraries libsundials nveccuda.lib
Libraries libsundials nvecmpicuda.lib
Header files nvector/nvector cuda.h

nvector/nvector mpicuda.h
nvector/cuda/ThreadPartitioning.hpp
nvector/cuda/Vector.hpp
nvector/cuda/VectorKernels.cuh

nvector raja Libraries libsundials nveccudaraja.lib
Libraries libsundials nveccudampiraja.lib
Header files nvector/nvector raja.h

nvector/nvector mpiraja.h
nvector/raja/Vector.hpp

nvector trilinos Libraries libsundials nvectrilinos.lib
Header files nvector/nvector trilinos.h

nvector/trilinos/SundialsTpetraVectorInterface.hpp
nvector/trilinos/SundialsTpetraVectorKernels.hpp

sunmatrix band Libraries libsundials sunmatrixband.lib
libsundials fsunmatrixband mod.lib
libsundials fsunmatrixband.a

Header files sunmatrix/sunmatrix band.h
Module
files

fsunmatrix band mod.mod

sunmatrix dense Libraries libsundials sunmatrixdense.lib
libsundials fsunmatrixdense mod.lib
libsundials fsunmatrixdense.a

Header files sunmatrix/sunmatrix dense.h
Module
files

fsunmatrix dense mod.mod

sunmatrix sparse Libraries libsundials sunmatrixsparse.lib
libsundials fsunmatrixsparse mod.lib
libsundials fsunmatrixsparse.a

Header files sunmatrix/sunmatrix sparse.h
Module
files

fsunmatrix sparse mod.mod

sunlinsol band Libraries libsundials sunlinsolband.lib
libsundials fsunlinsolband mod.lib
libsundials fsunlinsolband.a

Header files sunlinsol/sunlinsol band.h
Module
files

fsunlinsol band mod.mod

continued on next page

A.4 Installed libraries and exported header files 235

continued from last page

sunlinsol dense Libraries libsundials sunlinsoldense.lib
libsundials fsunlinsoldense mod.lib
libsundials fsunlinsoldense.a

Header files sunlinsol/sunlinsol dense.h
Module
files

fsunlinsol dense mod.mod

sunlinsol klu Libraries libsundials sunlinsolklu.lib
libsundials fsunlinsolklu mod.lib
libsundials fsunlinsolklu.a

Header files sunlinsol/sunlinsol klu.h
Module
files

fsunlinsol klu mod.mod

sunlinsol lapackband Libraries libsundials sunlinsollapackband.lib
libsundials fsunlinsollapackband.a

Header files sunlinsol/sunlinsol lapackband.h
sunlinsol lapackdense Libraries libsundials sunlinsollapackdense.lib

libsundials fsunlinsollapackdense.a
Header files sunlinsol/sunlinsol lapackdense.h

sunlinsol pcg Libraries libsundials sunlinsolpcg.lib
libsundials fsunlinsolpcg mod.lib
libsundials fsunlinsolpcg.a

Header files sunlinsol/sunlinsol pcg.h
Module
files

fsunlinsol pcg mod.mod

sunlinsol spbcgs Libraries libsundials sunlinsolspbcgs.lib
libsundials fsunlinsolspbcgs mod.lib
libsundials fsunlinsolspbcgs.a

Header files sunlinsol/sunlinsol spbcgs.h
Module
files

fsunlinsol spbcgs mod.mod

sunlinsol spfgmr Libraries libsundials sunlinsolspfgmr.lib
libsundials fsunlinsolspfgmr mod.lib
libsundials fsunlinsolspfgmr.a

Header files sunlinsol/sunlinsol spfgmr.h
Module
files

fsunlinsol spfgmr mod.mod

sunlinsol spgmr Libraries libsundials sunlinsolspgmr.lib
libsundials fsunlinsolspgmr mod.lib
libsundials fsunlinsolspgmr.a

Header files sunlinsol/sunlinsol spgmr.h
Module
files

fsunlinsol spgmr mod.mod

continued on next page

236 SUNDIALS Package Installation Procedure

continued from last page

sunlinsol sptfqmr Libraries libsundials sunlinsolsptfqmr.lib
libsundials fsunlinsolsptfqmr mod.lib
libsundials fsunlinsolsptfqmr.a

Header files sunlinsol/sunlinsol sptfqmr.h
Module
files

fsunlinsol sptfqmr mod.mod

sunlinsol superlumt Libraries libsundials sunlinsolsuperlumt.lib
libsundials fsunlinsolsuperlumt.a

Header files sunlinsol/sunlinsol superlumt.h
sunnonlinsol newton Libraries libsundials sunnonlinsolnewton.lib

libsundials fsunnonlinsolnewton mod.lib
libsundials fsunnonlinsolnewton.a

Header files sunnonlinsol/sunnonlinsol newton.h
Module
files

fsunnonlinsol newton mod.mod

sunnonlinsol fixedpoint Libraries libsundials sunnonlinsolfixedpoint.lib
libsundials fsunnonlinsolfixedpoint.a
libsundials fsunnonlinsolfixedpoint mod.lib

Header files sunnonlinsol/sunnonlinsol fixedpoint.h
Module
files

fsunnonlinsol fixedpoint mod.mod

cvode Libraries libsundials cvode.lib libsundials fcvode.a
Header files cvode/cvode.h cvode/cvode impl.h

cvode/cvode direct.h cvode/cvode ls.h
cvode/cvode spils.h cvode/cvode bandpre.h
cvode/cvode bbdpre.h

Module
files

fcvode mod.mod

cvodes Libraries libsundials cvodes.lib
Header files cvodes/cvodes.h cvodes/cvodes impl.h

cvodes/cvodes direct.h cvodes/cvodes ls.h
cvodes/cvodes spils.h cvodes/cvodes bandpre.h
cvodes/cvodes bbdpre.h

arkode Libraries libsundials arkode.lib libsundials farkode.a
Header files arkode/arkode.h arkode/arkode impl.h

arkode/arkode ls.h arkode/arkode bandpre.h
arkode/arkode bbdpre.h

ida Libraries libsundials ida.lib libsundials fida.a
Header files ida/ida.h ida/ida impl.h

ida/ida direct.h ida/ida ls.h
ida/ida spils.h ida/ida bbdpre.h

idas Libraries libsundials idas.lib
continued on next page

A.4 Installed libraries and exported header files 237

continued from last page

Header files idas/idas.h idas/idas impl.h
idas/idas direct.h idas/idas ls.h
idas/idas spils.h idas/idas bbdpre.h

kinsol Libraries libsundials kinsol.lib libsundials fkinsol.a
Header files kinsol/kinsol.h kinsol/kinsol impl.h

kinsol/kinsol direct.h kinsol/kinsol ls.h
kinsol/kinsol spils.h kinsol/kinsol bbdpre.h

Appendix B

KINSOL Constants

Below we list all input and output constants used by the main solver and linear solver modules,
together with their numerical values and a short description of their meaning.

B.1 KINSOL input constants

kinsol main solver module

KIN ETACHOICE1 1 Use Eisenstat and Walker Choice 1 for η.
KIN ETACHOICE2 2 Use Eisenstat and Walker Choice 2 for η.
KIN ETACONSTANT 3 Use constant value for η.
KIN NONE 0 Use inexact Newton globalization.
KIN LINESEARCH 1 Use linesearch globalization.

Iterative linear solver modules

PREC NONE 0 No preconditioning
PREC RIGHT 2 Preconditioning on the right.
MODIFIED GS 1 Use modified Gram-Schmidt procedure.
CLASSICAL GS 2 Use classical Gram-Schmidt procedure.

B.2 KINSOL output constants

kinsol main solver module

KIN SUCCESS 0 Successful function return.
KIN INITIAL GUESS OK 1 The initial user-supplied guess already satisfies the stopping cri-

terion.
KIN STEP LT STPTOL 2 The stopping tolerance on scaled step length was satisfied.
KIN WARNING 99 A non-fatal warning. The solver will continue.
KIN MEM NULL -1 The kin mem argument was NULL.
KIN ILL INPUT -2 One of the function inputs is illegal.
KIN NO MALLOC -3 The kinsol memory was not allocated by a call to KINMalloc.
KIN MEM FAIL -4 A memory allocation failed.

240 KINSOL Constants

KIN LINESEARCH NONCONV -5 The linesearch algorithm was unable to find an iterate suffi-
ciently distinct from the current iterate.

KIN MAXITER REACHED -6 The maximum number of nonlinear iterations has been reached.
KIN MXNEWT 5X EXCEEDED -7 Five consecutive steps have been taken that satisfy a scaled step

length test.
KIN LINESEARCH BCFAIL -8 The linesearch algorithm was unable to satisfy the β-condition

for nbcfails iterations.
KIN LINSOLV NO RECOVERY -9 The user-supplied routine preconditioner slve function failed re-

coverably, but the preconditioner is already current.
KIN LINIT FAIL -10 The linear solver’s initialization function failed.
KIN LSETUP FAIL -11 The linear solver’s setup function failed in an unrecoverable

manner.
KIN LSOLVE FAIL -12 The linear solver’s solve function failed in an unrecoverable man-

ner.
KIN SYSFUNC FAIL -13 The system function failed in an unrecoverable manner.
KIN FIRST SYSFUNC ERR -14 The system function failed recoverably at the first call.
KIN REPTD SYSFUNC ERR -15 The system function had repeated recoverable errors.

kinls linear solver interface

KINLS SUCCESS 0 Successful function return.
KINLS MEM NULL -1 The kin mem argument was NULL.
KINLS LMEM NULL -2 The kinls linear solver has not been initialized.
KINLS ILL INPUT -3 The kinls solver is not compatible with the current nvector

module, or an input value was illegal.
KINLS MEM FAIL -4 A memory allocation request failed.
KINLS PMEM NULL -5 The preconditioner module has not been initialized.
KINLS JACFUNC ERR -6 The Jacobian function failed
KINLS SUNMAT FAIL -7 An error occurred with the current sunmatrix module.
KINLS SUNLS FAIL -8 An error occurred with the current sunlinsol module.

Bibliography

[1] KLU Sparse Matrix Factorization Library. http://faculty.cse.tamu.edu/davis/suitesparse.html.

[2] SuperLU MT Threaded Sparse Matrix Factorization Library. http://crd-legacy.lbl.gov/ xiaoye/-
SuperLU/.

[3] D. G. Anderson. Iterative procedures for nonlinear integral equations. J. Assoc. Comput. Ma-
chinery, 12:547–560, 1965.

[4] P. N. Brown. A local convergence theory for combined inexact-Newton/finite difference projection
methods. SIAM J. Numer. Anal., 24(2):407–434, 1987.

[5] P. N. Brown and A. C. Hindmarsh. Reduced Storage Matrix Methods in Stiff ODE Systems. J.
Appl. Math. & Comp., 31:49–91, 1989.

[6] P. N. Brown and Y. Saad. Hybrid Krylov Methods for Nonlinear Systems of Equations. SIAM
J. Sci. Stat. Comput., 11:450–481, 1990.

[7] G. D. Byrne. Pragmatic Experiments with Krylov Methods in the Stiff ODE Setting. In J.R.
Cash and I. Gladwell, editors, Computational Ordinary Differential Equations, pages 323–356,
Oxford, 1992. Oxford University Press.

[8] A. M. Collier and R. Serban. Example Programs for KINSOL v4.1.0. Technical Report UCRL-
SM-208114, LLNL, 2019.

[9] T. A. Davis and P. N. Ekanathan. Algorithm 907: KLU, a direct sparse solver for circuit
simulation problems. ACM Trans. Math. Softw., 37(3), 2010.

[10] R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact Newton Methods. SIAM J. Numer.
Anal., 19:400–408, 1982.

[11] J. W. Demmel, J. R. Gilbert, and X. S. Li. An asynchronous parallel supernodal algorithm for
sparse gaussian elimination. SIAM J. Matrix Analysis and Applications, 20(4):915–952, 1999.

[12] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Non-
linear Equations. SIAM, Philadelphia, 1996.

[13] S. C. Eisenstat and H. F. Walker. Choosing the Forcing Terms in an Inexact Newton Method.
SIAM J. Sci. Comput., 17:16–32, 1996.

[14] H. Fang and Y. Saad. Two classes of secant methods for nonlinear acceleration. Numer. Linear
Algebra Appl., 16:197–221, 2009.

[15] R. W. Freund. A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear
Systems. SIAM J. Sci. Comp., 14:470–482, 1993.

[16] M. R. Hestenes and E. Stiefel. Methods of Conjugate Gradients for Solving Linear Systems. J.
Research of the National Bureau of Standards, 49(6):409–436, 1952.

242 BIBLIOGRAPHY

[17] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S.
Woodward. SUNDIALS, suite of nonlinear and differential/algebraic equation solvers. ACM
Trans. Math. Softw., (31):363–396, 2005.

[18] A. C. Hindmarsh, R. Serban, and A. Collier. Example Programs for IDA v4.1.0. Technical Report
UCRL-SM-208113, LLNL, 2019.

[19] A. C. Hindmarsh, R. Serban, and D. R. Reynolds. Example Programs for CVODE v4.1.0.
Technical report, LLNL, 2019. UCRL-SM-208110.

[20] C. T. Kelley. Iterative Methods for Solving Linear and Nonlinear Equations. SIAM, Philadelphia,
1995.

[21] X. S. Li. An overview of SuperLU: Algorithms, implementation, and user interface. ACM Trans.
Math. Softw., 31(3):302–325, September 2005.

[22] P. A. Lott, H. F. Walker, C. S. Woodward, and U. M. Yang. An accelerated Picard method for
nonlinear systems related to variably saturated flow. Adv. Wat. Resour., 38:92–101, 2012.

[23] J. M. Ortega and W. C. Rheinbolt. Iterative solution of nonlinear equations in several variables.
SIAM, Philadelphia, 2000. Originally published in 1970 by Academic Press.

[24] Daniel R. Reynolds. Example Programs for ARKODE v3.1.0. Technical report, Southern
Methodist University, 2019.

[25] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput.,
14(2):461–469, 1993.

[26] Y. Saad and M. H. Schultz. GMRES: A Generalized Minimal Residual Algorithm for Solving
Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comp., 7:856–869, 1986.

[27] H. A. Van Der Vorst. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the
Solution of Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comp., 13:631–644, 1992.

[28] H. F. Walker and P. Ni. Anderson acceleration for fixed-point iterations. SIAM Jour. Num.
Anal., 49(4):1715–1735, 2011.

Index

Anderson acceleration
definition, 18

Anderson acceleration UA
definition, 18

BIG REAL, 26, 81
booleantype, 26

data types
Fortran, 63

eh data, 54
error message

user-defined handler, 36
error messages, 34

redirecting, 36
user-defined handler, 54

ETA CONST, 71
ETA FORM, 71
ETA PARAMS, 71

Fixed-point iteration
definition, 17

fixed-point system
definition, 13

FKBJAC, 68
FKCOMMFN, 74
FKDJAC, 68
FKFUN, 65
FKINBANDSETJAC, 68
fkinbbd interface module

interface to the kinbbdpre module, 71
FKINBBDINIT, 73
FKINBBDOPT, 74
FKINCREATE, 67
FKINDENSESETJAC, 68
FKINDLSINIT, 67
FKINFREE, 70
FKININIT, 67
FKINJTIMES, 69, 74
FKINLSINIT, 67
FKINLSSETJAC, 69, 73
FKINLSSETPREC, 70
FKINSETIIN, 71

FKINSETRIN, 71
FKINSETVIN, 71
FKINSOL, 70
fkinsol interface module

interface to the kinbbdpre module, 74
optional input and output, 71
usage, 65–70
user-callable functions, 64–65
user-supplied functions, 65

FKINSPARSESETJAC, 69
FKINSPILSETJAC, 69
FKINSPILSETPREC, 70
FKINSPILSINIT, 67
FKINSPJAC, 68
FKLOCFN, 74
FKPSET, 70
FKPSOL, 69
FNORM TOL, 71
fnvector serial mod, 90
FSUNBANDLINSOLINIT, 172
FSUNDENSELINSOLINIT, 169
FSUNKLUINIT, 180
FSUNKLUREINIT, 181
FSUNKLUSETORDERING, 182
FSUNLAPACKBANDINIT, 176
FSUNLAPACKDENSEINIT, 174
fsunlinsol band mod, 171
fsunlinsol dense mod, 169
fsunlinsol klu mod, 180
fsunlinsol pcg mod, 214
fsunlinsol spbcgs mod, 202
fsunlinsol spfgmr mod, 196
fsunlinsol spgmr mod, 190
fsunlinsol sptfqmr mod, 208
FSUNMASSBANDLINSOLINIT, 172
FSUNMASSDENSELINSOLINIT, 169
FSUNMASSKLUINIT, 181
FSUNMASSKLUREINIT, 181
FSUNMASSKLUSETORDERING, 182
FSUNMASSLAPACKBANDINIT, 177
FSUNMASSLAPACKDENSEINIT, 174
FSUNMASSPCGINIT, 214
FSUNMASSPCGSETMAXL, 215

244 INDEX

FSUNMASSPCGSETPRECTYPE, 215
FSUNMASSSPBCGSINIT, 203
FSUNMASSSPBCGSSETMAXL, 204
FSUNMASSSPBCGSSETPRECTYPE, 204
FSUNMASSSPFGMRINIT, 197
FSUNMASSSPFGMRSETGSTYPE, 197
FSUNMASSSPFGMRSETMAXRS, 198
FSUNMASSSPFGMRSETPRECTYPE, 198
FSUNMASSSPGMRINIT, 190
FSUNMASSSPGMRSETGSTYPE, 191
FSUNMASSSPGMRSETMAXRS, 192
FSUNMASSSPGMRSETPRECTYPE, 191
FSUNMASSSPTFQMRINIT, 208
FSUNMASSSPTFQMRSETMAXL, 209
FSUNMASSSPTFQMRSETPRECTYPE, 209
FSUNMASSSUPERLUMTINIT, 185
FSUNMASSUPERLUMTSETORDERING, 186
fsunmatrix band mod, 145
fsunmatrix dense mod, 140
fsunmatrix sparse mod, 153
FSUNPCGINIT, 214
FSUNPCGSETMAXL, 215
FSUNPCGSETPRECTYPE, 215
FSUNSPBCGSINIT, 203
FSUNSPBCGSSETMAXL, 204
FSUNSPBCGSSETPRECTYPE, 203
FSUNSPFGMRINIT, 196
FSUNSPFGMRSETGSTYPE, 197
FSUNSPFGMRSETMAXRS, 198
FSUNSPFGMRSETPRECTYPE, 198
FSUNSPGMRINIT, 190
FSUNSPGMRSETGSTYPE, 191
FSUNSPGMRSETMAXRS, 192
FSUNSPGMRSETPRECTYPE, 191
FSUNSPTFQMRINIT, 208
FSUNSPTFQMRSETMAXL, 209
FSUNSPTFQMRSETPRECTYPE, 209
FSUNSUPERLUMTINIT, 185
FSUNSUPERLUMTSETORDERING, 185

half-bandwidths, 61
header files, 27, 60

ih data, 54
Inexact Newton iteration

definition, 13
info message

user-defined handler, 36
info messages

redirecting, 36
informational messages

user-defined handler, 54
IOUT, 71, 72

Jacobian approximation function

band
use in fkinsol, 68

dense
use in fkinsol, 68

difference quotient, 44
Jacobian times vector

difference quotient, 45
user-supplied, 45, 56–57

sparse
use in fkinsol, 68

user-supplied, 44, 54–56

KIN ETACHOICE1, 39
KIN ETACHOICE2, 39
KIN ETACONSTANT, 39
KIN FIRST SYSFUNC ERR, 34
KIN FP, 33
KIN ILL INPUT, 31, 33, 37–44
KIN INITIAL GUESS OK, 33
KIN LINESEARCH, 33
KIN LINESEARCH BCFAIL, 34
KIN LINESEARCH NONCONV, 33
KIN LINIT FAIL, 34
KIN LINSOLV NO RECOVERY, 34
KIN LSETUP FAIL, 34
KIN LSOLVE FAIL, 34
KIN MAXITER REACHED, 34
KIN MEM FAIL, 31, 33
KIN MEM NULL, 31, 33, 36–44, 48, 49
KIN MXNEWT 5X EXCEEDED, 34
KIN NO MALLOC, 33
KIN NONE, 33
KIN PICARD, 33
KIN REPTD SYSFUNC ERR, 34
KIN STEP LT STPTOL, 33
KIN SUCCESS, 31, 33, 36–44, 48, 49
KIN SYSFUNC FAIL, 34
KIN WARNING, 54
kinbbdpre preconditioner

optional output, 61–62
usage, 60–61
user-callable functions, 61
user-supplied functions, 59–60

KINBBDPrecGetNumGfnEvals, 62
KINBBDPrecGetWorkSpace, 61
KINBBDPrecInit, 61
KINCreate, 31
KINDlsGetLastFlag, 53
KINDlsGetNumFuncEvals, 50
KINDlsGetNumJacEvals, 50
KINDlsGetReturnFlagName, 53
KINDlsGetWorkspace, 50
KINDlsJacFn, 56
KINDlsSetJacFn, 45

INDEX 245

KINDlsSetLinearSolver, 32
KINErrHandlerFn, 54
KINFree, 31
KINGetFuncNorm, 49
KINGetLastLinFlag, 52
KINGetLinReturnFlagName, 53
KINGetLinWorkSpace, 49
KINGetNumBacktrackOps, 49
KINGetNumBetaCondFails, 48
KINGetNumFuncEvals, 48
KINGetNumJacEvals, 50
KINGetNumJtimesEvals, 52
KINGetNumLinConvFails, 51
KINGetNumLinFuncEvals, 50
KINGetNumLinIters, 51
KINGetNumNonlinSolvIters, 48
KINGetNumPrecEvals, 51
KINGetNumPrecSolves, 52
KINGetStepLength, 49
KINGetWorkSpace, 47
KINInfoHandlerFn, 54
KINInit, 31, 44
KINIS LMEM NULL, 51
kinls linear solver

Jacobian-vector product approximation used
by, 45

memory requirements, 49
kinls linear solver interface

Jacobian approximation used by, 44
optional input, 44–46
optional output, 49–53
preconditioner setup function, 45, 58
preconditioner solve function, 45, 57
use in fkinsol, 67

KINLS ILL INPUT, 32, 61
KINLS LMEM NULL, 45, 46, 50–52, 61
KINLS MEM FAIL, 32, 61
KINLS MEM NULL, 32, 44–46, 50–52
KINLS PMEM NULL, 62
KINLS SUCCESS, 32, 44–46, 50–52
KINLS SUNLS FAIL, 32, 45, 46
KINLsJacFn, 54
KINLsJacTimesVecFn, 56
KINLsPrecSetupFn, 58
KINLsPrecSolveFn, 57
KINSetConstraints, 43
KINSetErrFile, 36
KINSetErrHandlerFn, 36
KINSetEtaConstValue, 40
KINSetEtaForm, 39
KINSetEtaParams, 40
KINSetFuncNormTol, 42
KINSetInfoFile, 36
KINSetInfoHandlerFn, 37

KINSetJacFn, 44
KINSetJacTimesVecFn, 45
KINSetLinearSolver, 29, 32, 54, 136
KINSetMAA, 44
KINSetMaxBetaFails, 42
KINSetMaxNewtonStep, 41
KINSetMaxSetupCalls, 39
KINSetMaxSubSetupCalls, 39
KINSetNoInitSetup, 38
KINSetNoMinEps, 41
KINSetNoResMon, 38
KINSetNumMaxIters, 38
KINSetPreconditioner, 45, 46
KINSetPrintLevel, 37
KINSetRelErrFunc, 42
KINSetResMonConstValue, 41
KINSetResMonParams, 41
KINSetScaledStepTol, 43
KINSetSysFunc, 43
KINSetUserData, 37
kinsol

brief description of, 1
motivation for writing in C, 2
package structure, 21
relationship to NKSOL, 1

kinsol linear solver interface
kinls, 32

kinsol linear solver interfaces, 21
kinsol linear solvers

header files, 27
implementation details, 22
nvector compatibility, 25
selecting one, 32

KINSol, 29, 33
kinsol/kinsol.h, 27
kinsol/kinsol ls.h, 27
KINSOLkinsol linear solvers

selecting one, 31
KINSpilsGetLastFlag, 53
KINSpilsGetNumConvFails, 51
KINSpilsGetNumFuncEvals, 50
KINSpilsGetNumJtimesEvals, 52
KINSpilsGetNumLinIters, 51
KINSpilsGetNumPrecEvals, 51
KINSpilsGetNumPrecSolves, 52
KINSpilsGetReturnFlagName, 53
KINSpilsGetWorkspace, 50
KINSpilsJacTimesVecFn, 57
KINSpilsPrecSetupFn, 58
KINSpilsPrecSolveFn, 57
KINSpilsSetJacTimesVecFn, 45
KINSpilsSetLinearSolver, 32
KINSpilsSetPreconditioner, 46
KINSysFn, 31, 53

246 INDEX

MAA, 71
MAX NITERS, 71
MAX SETUPS, 71
MAX SP SETUPS, 71
MAX STEP, 71
memory requirements

kinbbdpre preconditioner, 62
kinls linear solver, 49
kinsol solver, 48

Modified Newton iteration
definition, 13

N VCloneVectorArray, 76
N VCloneVectorArray OpenMP, 97
N VCloneVectorArray OpenMPDEV, 124
N VCloneVectorArray Parallel, 92
N VCloneVectorArray ParHyp, 106
N VCloneVectorArray Petsc, 110
N VCloneVectorArray Pthreads, 102
N VCloneVectorArray Serial, 87
N VCloneVectorArrayEmpty, 76
N VCloneVectorArrayEmpty OpenMP, 97
N VCloneVectorArrayEmpty OpenMPDEV, 124
N VCloneVectorArrayEmpty Parallel, 92
N VCloneVectorArrayEmpty ParHyp, 107
N VCloneVectorArrayEmpty Petsc, 110
N VCloneVectorArrayEmpty Pthreads, 102
N VCloneVectorArrayEmpty Serial, 88
N VCopyFromDevice Cuda, 116
N VCopyFromDevice OpenMPDEV, 125
N VCopyFromDevice Raja, 121
N VCopyToDevice Cuda, 116
N VCopyToDevice OpenMPDEV, 125
N VCopyToDevice Raja, 121
N VDestroyVectorArray, 76
N VDestroyVectorArray OpenMP, 97
N VDestroyVectorArray OpenMPDEV, 124
N VDestroyVectorArray Parallel, 92
N VDestroyVectorArray ParHyp, 107
N VDestroyVectorArray Petsc, 110
N VDestroyVectorArray Pthreads, 102
N VDestroyVectorArray Serial, 88
N Vector, 27, 75
N VEnableConstVectorArray Cuda, 117
N VEnableConstVectorArray OpenMP, 99
N VEnableConstVectorArray OpenMPDEV, 126
N VEnableConstVectorArray Parallel, 94
N VEnableConstVectorArray ParHyp, 108
N VEnableConstVectorArray Petsc, 111
N VEnableConstVectorArray Pthreads, 104
N VEnableConstVectorArray Raja, 122
N VEnableConstVectorArray Serial, 89
N VEnableDotProdMulti Cuda, 117
N VEnableDotProdMulti OpenMP, 98

N VEnableDotProdMulti OpenMPDEV, 126
N VEnableDotProdMulti Parallel, 94
N VEnableDotProdMulti ParHyp, 108
N VEnableDotProdMulti Petsc, 111
N VEnableDotProdMulti Pthreads, 104
N VEnableDotProdMulti Serial, 89
N VEnableFusedOps Cuda, 117
N VEnableFusedOps OpenMP, 98
N VEnableFusedOps OpenMPDEV, 125
N VEnableFusedOps Parallel, 93
N VEnableFusedOps ParHyp, 107
N VEnableFusedOps Petsc, 111
N VEnableFusedOps Pthreads, 103
N VEnableFusedOps Raja, 121
N VEnableFusedOps Serial, 88
N VEnableLinearCombination Cuda, 117
N VEnableLinearCombination OpenMP, 98
N VEnableLinearCombination OpenMPDEV, 125
N VEnableLinearCombination Parallel, 93
N VEnableLinearCombination ParHyp, 107
N VEnableLinearCombination Petsc, 111
N VEnableLinearCombination Pthreads, 103
N VEnableLinearCombination Raja, 121
N VEnableLinearCombination Serial, 88
N VEnableLinearCombinationVectorArray Cuda,

118
N VEnableLinearCombinationVectorArray OpenMP,

99
N VEnableLinearCombinationVectorArray OpenMPDEV,

127
N VEnableLinearCombinationVectorArray Parallel,

95
N VEnableLinearCombinationVectorArray ParHyp,

109
N VEnableLinearCombinationVectorArray Petsc,

112
N VEnableLinearCombinationVectorArray Pthreads,

105
N VEnableLinearCombinationVectorArray Raja,

122
N VEnableLinearCombinationVectorArray Serial,

90
N VEnableLinearSumVectorArray Cuda, 117
N VEnableLinearSumVectorArray OpenMP, 99
N VEnableLinearSumVectorArray OpenMPDEV, 126
N VEnableLinearSumVectorArray Parallel, 94
N VEnableLinearSumVectorArray ParHyp, 108
N VEnableLinearSumVectorArray Petsc, 111
N VEnableLinearSumVectorArray Pthreads, 104
N VEnableLinearSumVectorArray Raja, 122
N VEnableLinearSumVectorArray Serial, 89
N VEnableScaleAddMulti Cuda, 117
N VEnableScaleAddMulti OpenMP, 98
N VEnableScaleAddMulti OpenMPDEV, 125

INDEX 247

N VEnableScaleAddMulti Parallel, 93
N VEnableScaleAddMulti ParHyp, 107
N VEnableScaleAddMulti Petsc, 111
N VEnableScaleAddMulti Pthreads, 103
N VEnableScaleAddMulti Raja, 121
N VEnableScaleAddMulti Serial, 89
N VEnableScaleAddMultiVectorArray Cuda, 118
N VEnableScaleAddMultiVectorArray OpenMP, 99
N VEnableScaleAddMultiVectorArray OpenMPDEV,

126
N VEnableScaleAddMultiVectorArray Parallel,

94
N VEnableScaleAddMultiVectorArray ParHyp, 108
N VEnableScaleAddMultiVectorArray Petsc, 112
N VEnableScaleAddMultiVectorArray Pthreads,

104
N VEnableScaleAddMultiVectorArray Raja, 122
N VEnableScaleAddMultiVectorArray Serial, 90
N VEnableScaleVectorArray Cuda, 117
N VEnableScaleVectorArray OpenMP, 99
N VEnableScaleVectorArray OpenMPDEV, 126
N VEnableScaleVectorArray Parallel, 94
N VEnableScaleVectorArray ParHyp, 108
N VEnableScaleVectorArray Petsc, 111
N VEnableScaleVectorArray Pthreads, 104
N VEnableScaleVectorArray Raja, 122
N VEnableScaleVectorArray Serial, 89
N VEnableWrmsNormMaskVectorArray Cuda, 118
N VEnableWrmsNormMaskVectorArray OpenMP, 99
N VEnableWrmsNormMaskVectorArray OpenMPDEV,

126
N VEnableWrmsNormMaskVectorArray Parallel, 94
N VEnableWrmsNormMaskVectorArray ParHyp, 108
N VEnableWrmsNormMaskVectorArray Petsc, 112
N VEnableWrmsNormMaskVectorArray Pthreads, 104
N VEnableWrmsNormMaskVectorArray Serial, 89
N VEnableWrmsNormVectorArray Cuda, 118
N VEnableWrmsNormVectorArray OpenMP, 99
N VEnableWrmsNormVectorArray OpenMPDEV, 126
N VEnableWrmsNormVectorArray Parallel, 94
N VEnableWrmsNormVectorArray ParHyp, 108
N VEnableWrmsNormVectorArray Petsc, 112
N VEnableWrmsNormVectorArray Pthreads, 104
N VEnableWrmsNormVectorArray Serial, 89
N VGetDeviceArrayPointer Cuda, 114
N VGetDeviceArrayPointer OpenMPDEV, 124
N VGetDeviceArrayPointer Raja, 119
N VGetHostArrayPointer Cuda, 114
N VGetHostArrayPointer OpenMPDEV, 124
N VGetHostArrayPointer Raja, 119
N VGetLength Cuda, 113
N VGetLength OpenMP, 97
N VGetLength OpenMPDEV, 124
N VGetLength Parallel, 93

N VGetLength Pthreads, 103
N VGetLength Raja, 119
N VGetLength Serial, 88
N VGetLocalLength Cuda, 113
N VGetLocalLength Parallel, 93
N VGetLocalLength Raja, 119
N VGetMPIComm Cuda, 114
N VGetMPIComm Raja, 120
N VGetVector ParHyp, 106
N VGetVector Petsc, 110
N VGetVector Trilinos, 128
N VIsManagedMemory Cuda, 114
N VMake Cuda, 115
N VMake OpenMP, 97
N VMake OpenMPDEV, 124
N VMake Parallel, 92
N VMake ParHyp, 106
N VMake Petsc, 110
N VMake Pthreads, 102
N VMake Raja, 120
N VMake Serial, 87
N VMake Trilinos, 128
N VMakeManaged Cuda, 115
N VNew Cuda, 114
N VNew OpenMP, 97
N VNew OpenMPDEV, 124
N VNew Parallel, 92
N VNew Pthreads, 102
N VNew Raja, 120
N VNew Serial, 87
N VNewEmpty Cuda, 115
N VNewEmpty OpenMP, 97
N VNewEmpty OpenMPDEV, 124
N VNewEmpty Parallel, 92
N VNewEmpty ParHyp, 106
N VNewEmpty Petsc, 110
N VNewEmpty Pthreads, 102
N VNewEmpty Raja, 120
N VNewEmpty Serial, 87
N VNewManaged Cuda, 115
N VPrint Cuda, 116
N VPrint OpenMP, 98
N VPrint OpenMPDEV, 125
N VPrint Parallel, 93
N VPrint ParHyp, 107
N VPrint Petsc, 110
N VPrint Pthreads, 103
N VPrint Raja, 121
N VPrint Serial, 88
N VPrintFile Cuda, 116
N VPrintFile OpenMP, 98
N VPrintFile OpenMPDEV, 125
N VPrintFile Parallel, 93
N VPrintFile ParHyp, 107

248 INDEX

N VPrintFile Petsc, 110
N VPrintFile Pthreads, 103
N VPrintFile Raja, 121
N VPrintFile Serial, 88
N VSetCudaStream Cuda, 116
NO INIT SETUP, 71
NO MIN EPS, 71
NO RES MON, 71
nonlinear system

definition, 13
NV COMM P, 91
NV CONTENT OMP, 96
NV CONTENT OMPDEV, 123
NV CONTENT P, 91
NV CONTENT PT, 101
NV CONTENT S, 86
NV DATA DEV OMPDEV, 123
NV DATA HOST OMPDEV, 123
NV DATA OMP, 96
NV DATA P, 91
NV DATA PT, 101
NV DATA S, 86
NV GLOBLENGTH P, 91
NV Ith OMP, 96
NV Ith P, 92
NV Ith PT, 101
NV Ith S, 87
NV LENGTH OMP, 96
NV LENGTH OMPDEV, 123
NV LENGTH PT, 101
NV LENGTH S, 86
NV LOCLENGTH P, 91
NV NUM THREADS OMP, 96
NV NUM THREADS PT, 101
NV OWN DATA OMP, 96
NV OWN DATA OMPDEV, 123
NV OWN DATA P, 91
NV OWN DATA PT, 101
NV OWN DATA S, 86
NVECTOR module, 75
nvector openmp mod, 100
nvector pthreads mod, 105

optional input
generic linear solver interface, 44–46
solver, 36–44

optional output
band-block-diagonal preconditioner, 61–62
generic linear solver interface, 49–53
solver, 47–49
version, 46–47

Picard iteration
definition, 17

portability, 26
Fortran, 63

Preconditioner setup routine
use in fkinsol, 69

Preconditioner solve routine
use in fkinsol, 69

preconditioning
advice on, 22
setup and solve phases, 22
user-supplied, 45–46, 57, 58

PRNT LEVEL, 71
problem-defining function, 53

RCONST, 26
realtype, 26
RERR FUNC, 71
RMON CONST, 71
RMON PARAMS, 71
ROUT, 71, 72

SM COLS B, 142
SM COLS D, 137
SM COLUMN B, 55, 142
SM COLUMN D, 55, 138
SM COLUMN ELEMENT B, 55, 142
SM COLUMNS B, 142
SM COLUMNS D, 137
SM COLUMNS S, 149
SM CONTENT B, 142
SM CONTENT D, 137
SM CONTENT S, 149
SM DATA B, 142
SM DATA D, 137
SM DATA S, 149
SM ELEMENT B, 55, 142
SM ELEMENT D, 55, 138
SM INDEXPTRS S, 149
SM INDEXVALS S, 149
SM LBAND B, 142
SM LDATA B, 142
SM LDATA D, 137
SM LDIM B, 142
SM NNZ S, 56, 149
SM NP S, 149
SM ROWS B, 142
SM ROWS D, 137
SM ROWS S, 149
SM SPARSETYPE S, 149
SM SUBAND B, 142
SM UBAND B, 142
SMALL REAL, 26
SSTEP TOL, 71
SUNBandMatrix, 29, 143
SUNBandMatrix Cols, 145

INDEX 249

SUNBandMatrix Column, 145
SUNBandMatrix Columns, 144
SUNBandMatrix Data, 145
SUNBandMatrix LDim, 144
SUNBandMatrix LowerBandwidth, 144
SUNBandMatrix Print, 144
SUNBandMatrix Rows, 144
SUNBandMatrix StoredUpperBandwidth, 144
SUNBandMatrix UpperBandwidth, 144
SUNBandMatrixStorage, 143
SUNDenseMatrix, 29, 138
SUNDenseMatrix Cols, 139
SUNDenseMatrix Column, 139
SUNDenseMatrix Columns, 138
SUNDenseMatrix Data, 139
SUNDenseMatrix LData, 139
SUNDenseMatrix Print, 138
SUNDenseMatrix Rows, 138
sundials/sundials linearsolver.h, 155
sundials nvector.h, 27
sundials types.h, 26, 27
SUNDIALSGetVersion, 46
SUNDIALSGetVersionNumber, 47
sunindextype, 26
SUNLinearSolver, 155, 162
SUNLinearSolver module, 155
SUNLINEARSOLVER DIRECT, 157, 164
SUNLINEARSOLVER ITERATIVE, 157, 165
SUNLINEARSOLVER MATRIX ITERATIVE, 157, 165
sunlinsol/sunlinsol band.h, 27
sunlinsol/sunlinsol dense.h, 27
sunlinsol/sunlinsol klu.h, 27
sunlinsol/sunlinsol lapackband.h, 27
sunlinsol/sunlinsol lapackdense.h, 27
sunlinsol/sunlinsol pcg.h, 27
sunlinsol/sunlinsol spbcgs.h, 27
sunlinsol/sunlinsol spfgmr.h, 27
sunlinsol/sunlinsol spgmr.h, 27
sunlinsol/sunlinsol sptfqmr.h, 27
sunlinsol/sunlinsol superlumt.h, 27
SUNLinSol Band, 32, 170
SUNLinSol Dense, 32, 168
SUNLinSol KLU, 32, 178
SUNLinSol KLUReInit, 179
SUNLinSol KLUSetOrdering, 181
SUNLinSol LapackBand, 32, 175
SUNLinSol LapackDense, 32, 173
SUNLinSol PCG, 32, 212, 214
SUNLinSol PCGSetMaxl, 213
SUNLinSol PCGSetPrecType, 213
SUNLinSol SPBCGS, 32, 201, 203
SUNLinSol SPBCGSSetMaxl, 202
SUNLinSol SPBCGSSetPrecType, 202
SUNLinSol SPFGMR, 32, 194, 197

SUNLinSol SPFGMRSetMaxRestarts, 196
SUNLinSol SPFGMRSetPrecType, 195
SUNLinSol SPGMR, 32, 187, 190
SUNLinSol SPGMRSetMaxRestarts, 189
SUNLinSol SPGMRSetPrecType, 189
SUNLinSol SPTFQMR, 32, 206, 208
SUNLinSol SPTFQMRSetMaxl, 207
SUNLinSol SPTFQMRSetPrecType, 207
SUNLinSol SuperLUMT, 32, 183
SUNLinSol SuperLUMTSetOrdering, 185
SUNLinSolFree, 30, 156, 158
SUNLinSolGetType, 156, 157
SUNLinSolInitialize, 156, 157
SUNLinSolLastFlag, 160
SUNLinSolNumIters, 159
SUNLinSolResNorm, 159
SUNLinSolSetATimes, 157, 158, 165
SUNLinSolSetPreconditioner, 159
SUNLinSolSetScalingVectors, 159
SUNLinSolSetup, 156, 157, 165
SUNLinSolSolve, 156, 158
SUNLinSolSpace, 160
SUNMatDestroy, 30
SUNMatrix, 133
SUNMatrix module, 133
SUNSparseFromBandMatrix, 150
SUNSparseFromDenseMatrix, 150
SUNSparseMatrix, 29, 150
SUNSparseMatrix Columns, 151
SUNSparseMatrix Data, 152
SUNSparseMatrix IndexPointers, 152
SUNSparseMatrix IndexValues, 152
SUNSparseMatrix NNZ, 56, 151
SUNSparseMatrix NP, 152
SUNSparseMatrix Print, 151
SUNSparseMatrix Realloc, 151
SUNSparseMatrix Reallocate, 151
SUNSparseMatrix Rows, 151
SUNSparseMatrix SparseType, 152

UNIT ROUNDOFF, 26
User main program

fkinbbd usage, 73
fkinsol usage, 65
kinbbdpre usage, 60
kinsol usage, 28

user data, 53, 59

	List of Tables
	List of Figures
	Introduction
	Historical Background
	Changes from previous versions
	Reading this User Guide
	SUNDIALS Release License
	BSD 3-Clause License
	Additional Notice
	SUNDIALS Release Numbers

	Mathematical Considerations
	Code Organization
	SUNDIALS organization
	KINSOL organization

	Using KINSOL for C Applications
	Access to library and header files
	Data types
	Floating point types
	Integer types used for vector and matrix indices

	Header files
	A skeleton of the user's main program
	User-callable functions
	KINSOL initialization and deallocation functions
	Linear solver specification function
	KINSOL solver function
	Optional input functions
	Main solver optional input functions
	Linear solver interface optional input functions

	Optional output functions
	SUNDIALS version information
	Main solver optional output functions
	kinls linear solver interface optional output functions

	User-supplied functions
	Problem-defining function
	Error message handler function
	Informational message handler function
	Jacobian construction (matrix-based linear solvers)
	Jacobian-vector product (matrix-free linear solvers)
	Preconditioner solve (iterative linear solvers)
	Preconditioner setup (iterative linear solvers)

	A parallel band-block-diagonal preconditioner module

	FKINSOL, an Interface Module for FORTRAN Applications
	Important note on portability
	Fortran Data Types
	FKINSOL routines
	Usage of the FKINSOL interface module
	FKINSOL optional input and output
	Usage of the FKINBBD interface to KINBBDPRE

	Description of the NVECTOR module
	NVECTOR functions used by KINSOL
	The NVECTOR_SERIAL implementation
	NVECTOR_SERIAL accessor macros
	NVECTOR_SERIAL functions
	NVECTOR_SERIAL Fortran interfaces

	The NVECTOR_PARALLEL implementation
	NVECTOR_PARALLEL accessor macros
	NVECTOR_PARALLEL functions
	NVECTOR_PARALLEL Fortran interfaces

	The NVECTOR_OPENMP implementation
	NVECTOR_OPENMP accessor macros
	NVECTOR_OPENMP functions
	NVECTOR_OPENMP Fortran interfaces

	The NVECTOR_PTHREADS implementation
	NVECTOR_PTHREADS accessor macros
	NVECTOR_PTHREADS functions
	NVECTOR_PTHREADS Fortran interfaces

	The NVECTOR_PARHYP implementation
	NVECTOR_PARHYP functions

	The NVECTOR_PETSC implementation
	NVECTOR_PETSC functions

	The NVECTOR_CUDA implementation
	NVECTOR_CUDA functions

	The NVECTOR_RAJA implementation
	NVECTOR_RAJA functions

	The NVECTOR_OPENMPDEV implementation
	NVECTOR_OPENMPDEV accessor macros
	NVECTOR_OPENMPDEV functions

	The NVECTOR_TRILINOS implementation
	NVECTOR Examples

	Description of the SUNMatrix module
	SUNMatrix functions used by KINSOL
	The SUNMatrix_Dense implementation
	SUNMatrix_Dense accessor macros
	SUNMatrix_Dense functions
	SUNMatrix_Dense Fortran interfaces

	The SUNMatrix_Band implementation
	SUNMatrix_Band accessor macros
	SUNMatrix_Band functions
	SUNMatrix_Band Fortran interfaces

	The SUNMatrix_Sparse implementation
	SUNMatrix_Sparse accessor macros
	SUNMatrix_Sparse functions
	SUNMatrix_Sparse Fortran interfaces

	Description of the SUNLinearSolver module
	The SUNLinearSolver API
	SUNLinearSolver core functions
	SUNLinearSolver set functions
	SUNLinearSolver get functions
	Functions provided by sundials packages
	SUNLinearSolver return codes
	The generic SUNLinearSolver module

	Compatibility of SUNLinearSolver modules
	Implementing a custom SUNLinearSolver module
	Intended use cases

	KINSOL SUNLinearSolver interface
	Lagged matrix information
	Iterative linear solver tolerance

	The SUNLinearSolver_Dense implementation
	SUNLinearSolver_Dense description
	SUNLinearSolver_Dense functions
	SUNLinearSolver_Dense Fortran interfaces
	SUNLinearSolver_Dense content

	The SUNLinearSolver_Band implementation
	SUNLinearSolver_Band description
	SUNLinearSolver_Band functions
	SUNLinearSolver_Band Fortran interfaces
	SUNLinearSolver_Band content

	The SUNLinearSolver_LapackDense implementation
	SUNLinearSolver_LapackDense description
	SUNLinearSolver_LapackDense functions
	SUNLinearSolver_LapackDense Fortran interfaces
	SUNLinearSolver_LapackDense content

	The SUNLinearSolver_LapackBand implementation
	SUNLinearSolver_LapackBand description
	SUNLinearSolver_LapackBand functions
	SUNLinearSolver_LapackBand Fortran interfaces
	SUNLinearSolver_LapackBand content

	The SUNLinearSolver_KLU implementation
	SUNLinearSolver_KLU description
	SUNLinearSolver_KLU functions
	SUNLinearSolver_KLU Fortran interfaces
	SUNLinearSolver_KLU content

	The SUNLinearSolver_SuperLUMT implementation
	SUNLinearSolver_SuperLUMT description
	SUNLinearSolver_SuperLUMT functions
	SUNLinearSolver_SuperLUMT Fortran interfaces
	SUNLinearSolver_SuperLUMT content

	The SUNLinearSolver_SPGMR implementation
	SUNLinearSolver_SPGMR description
	SUNLinearSolver_SPGMR functions
	SUNLinearSolver_SPGMR Fortran interfaces
	SUNLinearSolver_SPGMR content

	The SUNLinearSolver_SPFGMR implementation
	SUNLinearSolver_SPFGMR description
	SUNLinearSolver_SPFGMR functions
	SUNLinearSolver_SPFGMR Fortran interfaces
	SUNLinearSolver_SPFGMR content

	The SUNLinearSolver_SPBCGS implementation
	SUNLinearSolver_SPBCGS description
	SUNLinearSolver_SPBCGS functions
	SUNLinearSolver_SPBCGS Fortran interfaces
	SUNLinearSolver_SPBCGS content

	The SUNLinearSolver_SPTFQMR implementation
	SUNLinearSolver_SPTFQMR description
	SUNLinearSolver_SPTFQMR functions
	SUNLinearSolver_SPTFQMR Fortran interfaces
	SUNLinearSolver_SPTFQMR content

	The SUNLinearSolver_PCG implementation
	SUNLinearSolver_PCG description
	SUNLinearSolver_PCG functions
	SUNLinearSolver_PCG Fortran interfaces
	SUNLinearSolver_PCG content

	SUNLinearSolver Examples

	SUNDIALS Package Installation Procedure
	CMake-based installation
	Configuring, building, and installing on Unix-like systems
	Configuration options (Unix/Linux)
	Configuration examples
	Working with external Libraries
	Testing the build and installation

	Building and Running Examples
	Configuring, building, and installing on Windows
	Installed libraries and exported header files

	KINSOL Constants
	KINSOL input constants
	KINSOL output constants

	Bibliography
	Index

